Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Tyrone D. Cannon | I. Deary | S. Linnarsson | G. Abecasis | D. Rujescu | I. Giegling | A. Need | S. Djurovic | I. Melle | O. Andreassen | P. DeRosse | A. Malhotra | M. Gill | P. Sullivan | R. Poldrack | G. Breen | R. Straub | D. Weinberger | D. Glahn | A. Hariri | N. Martin | A. Lundervold | A. Heinz | L. Christiansen | F. Sabb | R. Plomin | D. Arking | A. Palotie | G. Montgomery | A. Corvin | D. Morris | I. Reinvang | S. Vrieze | K. Kendler | D. Posthuma | M. Keller | J. Starr | K. Burdick | T. White | R. Bilder | S. Hägg | N. Pedersen | J. Eriksson | D. Zabaneh | E. Krapohl | G. Schumann | T. Espeseth | T. Lencz | S. Medland | N. Hansell | M. Wright | M. Ikram | J. Savage | Kyoko Watanabe | J. Bryois | I. Karlsson | S. Stringer | C. D. de Leeuw | N. Skene | J. Hjerling-Leffler | S. Ripke | N. Smyrnis | A. Muñoz-Manchado | G. Davies | A. Payton | D. Liewald | S. Le Hellard | A. Christoforou | V. Steen | W. Ollier | N. Pendleton | H. Tiemeier | J. Lahti | K. Räikkönen | E. Widén | A. Voineskos | B. Webb | C. Reynolds | D. Avramopoulos | D. Dickinson | S. van der Sluis | E. London | G. Donohoe | E. Cirulli | T. Polderman | K. Grasby | P. Roussos | O. Chiba-Falek | E. Quinlan | M. Lam | B. Debrabant | J. Kaminski | K. Sundet | D. Dick | Marianne Nygaard | J. Trampush | J. Coleman | P. Jansen | N. Freimer | S. Giakoumaki | P. Bitsios | B. Konte | R. Karlsson | A. Hammerschlag | O. Smeland | P. Barr | E. Congdon | E. Knowles | M. Scult | E. D. Conley | Jin Yu | M. Nagel | S. Awasthi | H. Young | A. Hatzimanolis | D. Koltai | N. Stefanis | A. B. Muñoz-Manchado

[1]  M. Sadiku,et al.  General Intelligence , 1844, Illinois medical and surgical journal.

[2]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[3]  S. Linnarsson,et al.  Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals , 2019, Molecular Psychiatry.

[4]  Robert Plomin,et al.  The new genetics of intelligence , 2018, Nature Reviews Genetics.

[5]  G. Breen,et al.  A genome-wide association study for extremely high intelligence , 2017, Molecular Psychiatry.

[6]  Erdogan Taskesen,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[7]  Robert M. Maier,et al.  Causal associations between risk factors and common diseases inferred from GWAS summary data , 2017, Nature Communications.

[8]  Robert Plomin,et al.  Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence , 2017, Nature Genetics.

[9]  D. Posthuma,et al.  FUMA: Functional mapping and annotation of genetic associations , 2017, bioRxiv.

[10]  Tyrone D. Cannon,et al.  GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium , 2017, Molecular Psychiatry.

[11]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[12]  S. Djurovic,et al.  Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment , 2016, Schizophrenia bulletin.

[13]  A. Hofman,et al.  Identification of context-dependent expression quantitative trait loci in whole blood , 2016, Nature Genetics.

[14]  Anthony D. Schmitt,et al.  A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. , 2016, Cell reports.

[15]  J. Bressler,et al.  Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions , 2016, Translational Psychiatry.

[16]  S. Gabriel,et al.  Phenotypic extremes in rare variant study designs , 2015, European Journal of Human Genetics.

[17]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[18]  Stuart J. Ritchie,et al.  Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151) , 2016, Molecular Psychiatry.

[19]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[20]  I. Deary,et al.  Intelligence in youth and health at age 50 , 2015, Intelligence.

[21]  P. Visscher,et al.  Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.

[22]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[23]  P. Visscher,et al.  Nature Genetics Advance Online Publication , 2022 .

[24]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[25]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[26]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[27]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[28]  K. Kendler,et al.  IQ and schizophrenia in a Swedish national sample: their causal relationship and the interaction of IQ with genetic risk. , 2015, The American journal of psychiatry.

[29]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[30]  A Hofman,et al.  Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949) , 2015, Molecular Psychiatry.

[31]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..

[32]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[33]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[34]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[35]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[36]  Andreas Ziegler,et al.  How to Include Chromosome X in Your Genome‐Wide Association Study , 2014, Genetic epidemiology.

[37]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[38]  Jonathan P. Beauchamp,et al.  GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment , 2013, Science.

[39]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[40]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[41]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[42]  A. Sacker,et al.  Is education causal? Yes. , 2011, International journal of epidemiology.

[43]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[44]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[45]  I. Deary,et al.  The neuroscience of human intelligence differences , 2010, Nature Reviews Neuroscience.

[46]  I. Deary,et al.  Genetic and Environmental Transactions Underlying Educational Attainment. , 2009, Intelligence.

[47]  Thomas J. Bouchard,et al.  Still just 1 g: Consistent results from five test batteries , 2008 .

[48]  I. Deary,et al.  Intelligence and educational achievement , 2007 .

[49]  R. Plomin,et al.  Generalist genes and learning disabilities. , 2005, Psychological bulletin.

[50]  Thomas J. Bouchard,et al.  Just one g: consistent results from three test batteries , 2004 .

[51]  Pak Chung Sham,et al.  Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits , 2003, Bioinform..

[52]  R. Kahn,et al.  The association between brain volume and intelligence is of genetic origin , 2002, Nature Neuroscience.

[53]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[54]  A. Jensen,et al.  The g factor , 1996, Nature.

[55]  J. Carroll Human Cognitive Abilities-a sur-vey of factor-analytic studies , 1993 .

[56]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .

[57]  Intelligence , 1836, The Medico-chirurgical review.