Metal/TiO2 interfaces for memristive switches
暂无分享,去创建一个
J. Yang | M. Pickett | D. Ohlberg | R. Williams | J. Strachan | G. Medeiros-Ribeiro | Min-Xian Zhang | F. Miao | W. Yi | R. S. Williams | R. S. Williams | J. J. Yang
[1] J. Yang,et al. Dopant Control by Atomic Layer Deposition in Oxide Films for Memristive Switches , 2011 .
[2] Sung-Yool Choi,et al. Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .
[3] John Paul Strachan,et al. Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.
[4] J. Yang,et al. Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.
[5] Rainer Waser,et al. Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.
[6] T. Hasegawa,et al. Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.
[7] Gregory S. Snider,et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.
[8] John Paul Strachan,et al. Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching , 2009 .
[9] Jae Hyuck Jang,et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.
[10] John Paul Strachan,et al. Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS , 2009, Nanotechnology.
[11] Lifeng Liu,et al. Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory , 2009, IEEE Electron Device Letters.
[12] J. Yang,et al. A Family of Electronically Reconfigurable Nanodevices , 2009 .
[13] Warren Robinett,et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.
[14] R. Dittmann,et al. Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.
[15] B. Meyer,et al. Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .
[16] C. N. Lau,et al. The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.
[17] F. Zeng,et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.
[18] Wei Wu,et al. A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.
[19] W. Lu,et al. High-density Crossbar Arrays Based on a Si Memristive System , 2008 .
[20] J. Yang,et al. Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.
[21] A. Sawa. Resistive switching in transition metal oxides , 2008 .
[22] D. Stewart,et al. The missing memristor found , 2008, Nature.
[23] Chong-Yun Park,et al. Electrode-dependent electrical properties of metal/Nb-doped SrTiO3 junctions , 2008 .
[24] W. Lu,et al. CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.
[25] S. H. Jeon,et al. A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .
[26] Byung Joon Choi,et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .
[27] R. T. Tung. Recent advances in Schottky barrier concepts , 2001 .
[28] G. Eriksson,et al. Thermodynamic modelling of the system titanium-oxygen☆ , 1999 .
[29] P. Dobson. Physics of Semiconductor Devices (2nd edn) , 1982 .
[30] H. Michaelson. The work function of the elements and its periodicity , 1977 .
[31] L.O. Chua,et al. Memristive devices and systems , 1976, Proceedings of the IEEE.
[32] L. Chua. Memristor-The missing circuit element , 1971 .
[33] S. M. Sze,et al. Physics of semiconductor devices , 1969 .