Metal/TiO2 interfaces for memristive switches

[1]  J. Yang,et al.  Dopant Control by Atomic Layer Deposition in Oxide Films for Memristive Switches , 2011 .

[2]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[3]  John Paul Strachan,et al.  Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.

[4]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[5]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[6]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[7]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[8]  John Paul Strachan,et al.  Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching , 2009 .

[9]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[10]  John Paul Strachan,et al.  Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS , 2009, Nanotechnology.

[11]  Lifeng Liu,et al.  Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory , 2009, IEEE Electron Device Letters.

[12]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[13]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[14]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[15]  B. Meyer,et al.  Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .

[16]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[17]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[18]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[19]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[20]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[21]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[22]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[23]  Chong-Yun Park,et al.  Electrode-dependent electrical properties of metal/Nb-doped SrTiO3 junctions , 2008 .

[24]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[25]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[26]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[27]  R. T. Tung Recent advances in Schottky barrier concepts , 2001 .

[28]  G. Eriksson,et al.  Thermodynamic modelling of the system titanium-oxygen☆ , 1999 .

[29]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[30]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[31]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[32]  L. Chua Memristor-The missing circuit element , 1971 .

[33]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .