MOTIVES OVER FINITE FIELDS

The category of motives over the algebraic closure of a finite field is known to be a semisimple Q-linear Tannakian category, but unless one assumes the Tate conjecture there is little further one can say about it. However, once this conjecture is assumed, it is possible to give an almost entirely satisfactory description of the category together with its standard fibre functors. In particular it is possible to list properties of the category that characterize it up to equivalence and to prove (without assuming any conjectures) that there does exist a category with these properties. The Hodge conjecture implies that there is a functor from the category of CM-motives over Qal to the category of motives over F. We construct such a functor.

[1]  Motifs des variétés algébriques , 1971 .

[2]  U. Jannsen Motives, numerical equivalence, and semi-simplicity , 1992 .

[3]  William Messing,et al.  Cycle classes and Riemann-Roch for crystalline cohomology , 1987 .

[4]  A. Borel Some metric properties of arithmetic quotients of symmetric spaces , 1970 .

[5]  A. Borel,et al.  Introduction aux groupes arithmétiques , 1969 .

[6]  Canonical models and adelic representations , 1992 .

[7]  M. Rapoport Compactifications de l'espace de modules de Hilbert-Blumenthal , 1978 .

[8]  John Tate,et al.  Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) , 1969 .

[9]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[10]  Jean Giraud,et al.  Cohomologie non abélienne , 1971 .

[11]  Y. Namikawa Toroidal Compactification of Siegel Spaces , 1980 .

[12]  志村 五郎,et al.  Complex multiplication of Abelian varieties and its applications to number theory , 1961 .

[13]  G. Laffaille Groupes $p$-divisibles et modules filtrés : le cas peu ramifié , 1980 .

[14]  G. Shimura On Canonical Models of Arithmetic Quotients of Bounded Symmetric Domains: II , 1970 .

[15]  J. Milne VALUES OF ZETA FUNCTIONS OF VARIETIES OVER FINITE FIELDS , 1986 .

[16]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[17]  P. Deligne Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques , 1979 .

[18]  I. Satake Holomorphic Imbeddings of Symmetric Domains into a Siegel Space , 1965 .

[19]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .

[20]  R. Kottwitz Shimura varieties and twisted orbital integrals , 1984 .

[21]  R. Langlands Automorphic Representations, Shimura Varieties, and Motives. Ein Marchen* , 1977 .

[22]  P. Gallagher Some consequences of the Riemann hypothesis , 1980 .

[23]  W. Waterhouse,et al.  Introduction to Affine Group Schemes , 1979 .

[24]  P. Deligné Le Groupe Fondamental de la Droite Projective Moins Trois Points , 1989 .

[25]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[26]  P. Deligne La conjecture de Weil. I , 1974 .

[27]  Stephen S. Shatz,et al.  Profinite Groups, Arithmetic, and Geometry. , 1972 .

[28]  W. Schmid,et al.  DEGENERATION OF HODGE-STRUCTURES , 1986 .

[29]  R. Kottwitz Points on some Shimura varieties over finite fields , 1992 .

[30]  J. Fontaine,et al.  Construction de représentations $p$-adiques , 1982 .

[31]  W. L. Baily,et al.  Compactification of Arithmetic Quotients of Bounded Symmetric Domains , 1966 .

[32]  Pierre Berthelot,et al.  Cohomologie cristalline des sch'emas de caract'eristique p > 0 , 1974 .

[33]  G. Horrocks NOTES ON CRYSTALLINE COHOMOLOGY , 1980 .

[34]  G. Faltings,et al.  Degeneration of Abelian varieties , 1990 .

[35]  Par Jean-Pierre Wintenberger Un scindage de la filtration de Hodge pour certaines varietes algebriques sur les corps locaux , 1984 .

[36]  A. Weil,et al.  The Field of Definition of a Variety , 1956 .

[37]  G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .

[38]  G. Harder,et al.  Über die Galoiskohomologie halbeinfacher Matrizengruppen. I , 1965 .

[39]  A. Borel,et al.  Reductive groups over local fields , 1979 .

[40]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[41]  P. Deligne Travaux de Shimura , 1971 .

[42]  Jean-Pierre Serre,et al.  Good reduction of abelian varieties , 1968 .

[43]  M. Rapoport,et al.  Shimuravarietäten und Gerben. , 1987 .

[44]  A. Weil Sur les fonctions algébriques à corps de constantes fini , 1979 .

[45]  Phillip A. Griffiths,et al.  Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems , 1970 .

[46]  F. E. Zein Introduction à la théorie de Hodge mixte , 1991 .

[47]  J. Milne The points on a Shimura variety modulo a prime of good reduction , 1992 .

[48]  A. Atkin,et al.  Modular Forms , 2017 .

[49]  P. Deligne Valeurs de fonctions L et périodes d’intégrales , 1979 .

[50]  James S. Milne,et al.  Arithmetic Duality Theorems , 1987 .

[51]  Galois representations attached to points on Shimura varieties , 1993 .

[52]  Michel Demazure,et al.  Lectures on p-divisible groups , 1972 .

[53]  P. Griffiths,et al.  Locally homogeneous complex manifolds , 1969 .

[54]  J. Sansuc,et al.  Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. , 1981 .

[55]  I. Satake Symplectic representations of algebraic groups satisfying a certain analyticity condition , 1967 .

[56]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[57]  J. Milne Automorphic vector bundles on connected Shimura varieties , 1988 .

[58]  P. Deligne La conjecture de Weil pour les surfacesK3 , 1971 .

[59]  P. Deligne,et al.  Les Schémas de Modules de Courbes Elliptiques , 1973 .