Video-guided real-to-virtual parameter transfer for viscous fluids

In physically-based simulation, it is essential to choose appropriate material parameters to generate desirable simulation results. In many cases, however, choosing appropriate material parameters is very challenging, and often tedious trial-and-error parameter tuning steps are inevitable. In this paper, we propose a real-to-virtual parameter transfer framework that identifies material parameters of viscous fluids with example video data captured from real-world phenomena. Our method first extracts positional data of fluids and then uses the extracted data as a reference to identify the viscosity parameters, combining forward viscous fluid simulations and parameter optimization in an iterative process. We evaluate our method with a range of synthetic and real-world example data, and demonstrate that our method can identify the hidden physical variables and viscosity parameters. This set of recovered physical variables and parameters can then be effectively used in novel scenarios to generate viscous fluid behaviors visually consistent with the example videos.

[1]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[2]  Ming C. Lin,et al.  Fast optimization-based elasticity parameter estimation using reduced models , 2012, The Visual Computer.

[3]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[4]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[5]  Niloy J. Mitra,et al.  SMASH: physics-guided reconstruction of collisions from videos , 2016, ACM Trans. Graph..

[6]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[7]  Wolfgang Heidrich,et al.  Warp-and-project tomography for rapidly deforming objects , 2019, ACM Trans. Graph..

[8]  Philip J. Willis,et al.  Water Surface Modeling from a Single Viewpoint Video , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ming C. Lin,et al.  Example-guided physically based modal sound synthesis , 2013, ACM Trans. Graph..

[10]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[11]  Huamin Wang,et al.  Physically guided liquid surface modeling from videos , 2009, ACM Trans. Graph..

[12]  Ken-ichi Anjyo,et al.  Fluid volume modeling from sparse multi-view images by appearance transfer , 2015, ACM Trans. Graph..

[13]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[14]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[15]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[16]  Bin Wang,et al.  Deformation capture and modeling of soft objects , 2015, ACM Trans. Graph..

[17]  Wolfgang Heidrich,et al.  From capture to simulation , 2014, ACM Trans. Graph..

[18]  Licheng Yu,et al.  Detailed Garment Recovery from a Single-View Image , 2016, ArXiv.

[19]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[20]  Xiangyu Hu,et al.  Perceptual evaluation of liquid simulation methods , 2017, ACM Trans. Graph..

[21]  Dinesh K. Pai,et al.  The human touch , 2018, ACM Trans. Graph..

[22]  Dinesh K. Pai,et al.  Scanning physical interaction behavior of 3D objects , 2001, SIGGRAPH.

[23]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[24]  A. Matzenmiller,et al.  On parameter identification for material and microstructural properties , 2007 .

[25]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[26]  Romain Casati,et al.  Inverse elastic shell design with contact and friction , 2018, ACM Trans. Graph..

[27]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[28]  Chenfanfu Jiang,et al.  Silly rubber , 2019, ACM Trans. Graph..

[29]  Matthias Teschner,et al.  Robust and Efficient Estimation of Elasticity Parameters using the linear Finite Element Method , 2007, SimVis.

[30]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[31]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Yong Chen,et al.  Interactive Material Design Using Model Reduction , 2015, TOGS.

[33]  Takayuki Suzuki,et al.  Mixing sauces , 2019, ACM Trans. Graph..

[34]  Ming C. Lin,et al.  MaterialCloning: Acquiring Elasticity Parameters from Images for Medical Applications , 2016, IEEE Transactions on Visualization and Computer Graphics.

[35]  Xiong Dun,et al.  Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging , 2017, ACM Trans. Graph..

[36]  Kiriakos N. Kutulakos,et al.  Dynamic Refraction Stereo , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SIGGRAPH '04.

[38]  Jan Bender,et al.  Divergence-Free SPH for Incompressible and Viscous Fluids , 2017, IEEE Transactions on Visualization and Computer Graphics.

[39]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[40]  Miguel A. Otaduy,et al.  Conformation constraints for efficient viscoelastic fluid simulation , 2017, ACM Trans. Graph..

[41]  Hongyi Xu,et al.  Example-based damping design , 2017, ACM Trans. Graph..

[42]  Matthias Teschner,et al.  Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion , 2017, IEEE Transactions on Visualization and Computer Graphics.

[43]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[44]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[45]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[46]  Joëlle Thollot,et al.  Inverse dynamic hair modeling with frictional contact , 2013, ACM Trans. Graph..

[47]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[48]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[49]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SCA '04.

[50]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[51]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[52]  Huamin Wang,et al.  Inexact descent methods for elastic parameter optimization , 2018, ACM Trans. Graph..

[53]  Sydney Abbey,et al.  What is A “Method”? , 1991 .

[54]  Jessica K. Hodgins,et al.  Estimating cloth simulation parameters from video , 2003, SCA '03.

[55]  Derek Bradley,et al.  Simulation‐Ready Hair Capture , 2017, Comput. Graph. Forum.

[56]  Christopher Batty,et al.  A simple finite volume method for adaptive viscous liquids , 2011, SCA '11.

[57]  Wolfgang Heidrich,et al.  Coupled Fluid Density and Motion from Single Views , 2018, Comput. Graph. Forum.

[58]  Kiriakos N. Kutulakos,et al.  Photo-Consistent Reconstruction of Semitransparent Scenes by Density-Sheet Decomposition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Joseph Teran,et al.  Modeling and data-driven parameter estimation for woven fabrics , 2017, Symposium on Computer Animation.

[60]  Wolfgang Heidrich,et al.  Stochastic tomography and its applications in 3D imaging of mixing fluids , 2012, ACM Trans. Graph..

[61]  Ming C. Lin,et al.  A Geometrically Consistent Viscous Fluid Solver with Two‐Way Fluid‐Solid Coupling , 2019, Comput. Graph. Forum.

[62]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[63]  Jan Bender,et al.  A Physically Consistent Implicit Viscosity Solver for SPH Fluids , 2018, Comput. Graph. Forum.

[64]  I. Grant Particle image velocimetry: A review , 1997 .

[65]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[66]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[67]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[68]  Mirela Ben-Chen,et al.  Real-time viscous thin films , 2018, ACM Trans. Graph..

[69]  Wenbin Li,et al.  Dense Motion Estimation for Smoke , 2016, ACCV.

[70]  Hans-Peter Seidel,et al.  Time-resolved 3d capture of non-stationary gas flows , 2008, SIGGRAPH Asia '08.

[71]  Christopher D. Twigg,et al.  Optimization for sag-free simulations , 2011, SCA '11.

[72]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[73]  Tomoyuki Nishita,et al.  Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics , 2014, Comput. Graph..

[74]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[75]  Ming C. Lin,et al.  Learning-Based Cloth Material Recovery from Video , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[76]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[77]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[78]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[79]  Steven M. Seitz,et al.  Computing the Physical Parameters of Rigid-Body Motion from Video , 2002, ECCV.

[80]  Mridul Aanjaneya,et al.  An adaptive variational finite difference framework for efficient symmetric octree viscosity , 2019, ACM Trans. Graph..

[81]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.