The Role of the Inner Product in Stopping Criteria for Conjugate Gradient Iterations

Two natural and efficient stopping criteria are derived for conjugate gradient (CG) methods, based on iteration parameters. The derivation makes use of the inner product matrix B-defining the CG method. In particular, the relationship between the eigenvalues and B-norm of a matrix is investigated, and it is shown that the ratio of largest to smallest eigenvalues defines the B-condition number of the matrix. Upper and lower bounds on various measures of the error are also given. The compound stopping criterion presented here is an obvious “default” in software packages because it does not require any additional norm computations.

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  E. J. Craig The N‐Step Iteration Procedures , 1955 .

[3]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[4]  R. Gordon Error Bounds in Spectroscopy and Nonequilibrium Statistical Mechanics , 1968 .

[5]  Roy G. Gordon,et al.  Error Bounds in Equilibrium Statistical Mechanics , 1968 .

[6]  G. Golub,et al.  Bounds for the error of linear systems of equations using the theory of moments , 1972 .

[7]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[8]  G. Golub,et al.  Bounds for the error in linear systems , 1979 .

[9]  R. Skeel Iterative refinement implies numerical stability for Gaussian elimination , 1980 .

[10]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[11]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[12]  David R. Kincaid,et al.  Algorithm 586: ITPACK 2C: A FORTRAN Package for Solving Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods , 1982, TOMS.

[13]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[14]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[15]  W. Joubert,et al.  Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .

[16]  E. F. Kaasschieter,et al.  A practical termination criterion for the conjugate gradient method , 1988 .

[17]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[18]  C. Li,et al.  New stopping criteria for some iterative methods for a class of unsymmetric linear systems , 1991 .

[19]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[20]  Iain S. Duff,et al.  Stopping Criteria for Iterative Solvers , 1992, SIAM J. Matrix Anal. Appl..

[21]  Giles Auchmuty,et al.  A posteriori error estimates for linear equations , 1992 .

[22]  Thomas A. Manteuffel,et al.  A Comparison of Adaptive Chebyshev and Least Squares Polynomial Preconditioning for Hermitian Positive Definite Linear Systems , 1992, SIAM J. Sci. Comput..

[23]  C. Vuik Solution of the discretized incompressible Navier‐Stokes equations with the GMRES method , 1993 .

[24]  Martin H. Gutknecht,et al.  A matrix analysis of conjugate gradient algorithms , 1993 .

[25]  Thomas A. Manteuffel,et al.  On the roots of the orthogonal polynomials and residual polynomials associated with a conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[26]  G. Golub,et al.  On the Error Computation for Polynomial Based Iteration Methods , 1994 .