Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au(144/146)(SC(11)H(22)N(CH(2)CH(3))(3)(+))(x)(S(CH(2))(5)CH(3))(y)](x+).

Electrospray ionization triple-quadrupole mass spectrometry of ca. 1.6 nm diameter thiolate-protected gold nanoparticles has been achieved at higher resolution than in previous reports. The results reveal the presence of nanoparticles with formulas Au(144)L(60) and Au(146)L(59), present in the sample as a mixture. The improved resolution is based on lowering m/z by exchanging multiple [-SC(11)H(22)N(CH(2)CH(3))(3)(+)] ligands into the original [-S(CH(2))(5)CH(3)] ligand shell. The nanoparticles are thus intrinsically cationized and appear as a series of 10+ to 15+ mass spectral peaks. The assigned state of charge was confirmed by a collision-induced dissociation measurement.

[1]  Joseph F. Parker,et al.  Tandem mass spectrometry of thiolate-protected Au nanoparticles Na(x)Au25(SC2H4Ph)(18-y)(S(C2H4O)5CH3)(y). , 2009, Journal of the American Chemical Society.

[2]  R. Murray,et al.  Ferrocenated au nanoparticle monolayer adsorption on self-assembled monolayer-coated electrodes. , 2009, Analytical Chemistry.

[3]  Kui Jiao,et al.  Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. , 2009, Biosensors & bioelectronics.

[4]  R. Murray,et al.  Mass spectrometry of small bimetal monolayer-protected clusters. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  Christopher M. Yip,et al.  Color from colorless nanomaterials: Bragg reflectors made of nanoparticles , 2009 .

[6]  Young-Min Choi,et al.  Understanding the Role of Nanoparticles in Nano-oil Lubrication , 2009 .

[7]  Claire M. Cobley,et al.  Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications , 2009 .

[8]  J. Shumaker-Parry,et al.  9-BBN Induced Synthesis of Nearly Monodisperse ω-Functionalized Alkylthiol Stabilized Gold Nanoparticles , 2009 .

[9]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[10]  Joseph F. Parker,et al.  Mass Spectrometrically Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au25L18 Nanoparticles , 2008 .

[11]  Gerd Ritter,et al.  PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. , 2008, ACS nano.

[12]  A. Heck Native mass spectrometry: a bridge between interactomics and structural biology , 2008, Nature Methods.

[13]  Alaaldin M. Alkilany,et al.  Gold nanoparticles in biology: beyond toxicity to cellular imaging. , 2008, Accounts of chemical research.

[14]  R. Murray,et al.  FAB mass spectrometry of Au25(SR)18 nanoparticles. , 2008, Analytical chemistry.

[15]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[16]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[17]  S. Yuk,et al.  Gold/chitosan/pluronic composite nanoparticles for drug delivery , 2008 .

[18]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[19]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[20]  Joseph F. Parker,et al.  Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. , 2007, Journal of the American Chemical Society.

[21]  A. Castleman,et al.  Impact of Swapping Ethyl for Phenyl Groups on Diphosphine-Protected Undecagold , 2007 .

[22]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[23]  Michihiro Nakamura,et al.  Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles , 2007, International journal of cancer.

[24]  R. Murray,et al.  Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. , 2007, Journal of the American Chemical Society.

[25]  M. A. Heras,et al.  Quantized spectroelectrochemical behaviour of monolayer-protected gold cluster films assessed by reflectance spectroelectrochemical quartz crystal microbalance , 2007 .

[26]  A. Gerdon,et al.  Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. , 2007, Journal of the American Chemical Society.

[27]  Abraham Ulman,et al.  Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. , 2006, Small.

[28]  Ryan J. White,et al.  Hexanethiolate monolayer protected 38 gold atom cluster. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[29]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[30]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[31]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[32]  M. Sastry,et al.  On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. , 2001, Bioconjugate chemistry.

[33]  James E. Martin,et al.  Optical properties of gold and silver nanoclusters investigated by liquid chromatography , 2001 .

[34]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[35]  J. Gaumet,et al.  Electrospray mass spectrometry of , 2000, Journal of the American Society for Mass Spectrometry.

[36]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[37]  Justin D. Debord,et al.  The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. , 1999, Analytical chemistry.

[38]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[39]  R. Murray,et al.  Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules , 1999 .

[40]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[41]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[42]  George M. Whitesides,et al.  Microfabrication through Electrostatic Self-Assembly , 1997 .

[43]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[44]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[45]  T. G. Gardner,et al.  Californium-252 plasma desorption mass spectrometry of gold clusters: fragmentation patterns in small clusters and differences in sample composition in large clusters , 1993 .

[46]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[47]  Eva Koplin,et al.  CHAPTER 5 – Application of Metal Nanoclusters in Nanoelectronics , 2008 .

[48]  Anand Gole,et al.  Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. , 2004, Journal of colloid and interface science.

[49]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.