Computational analysis of laminar structure of the human cortex based on local neuron features

In this paper, we present a novel method for analysis and segmentation of laminar structure of the cortex based on tissue characteristics whose change across the gray matter facilitates distinction between cortical layers. We develop and analyze features of individual neurons to investigate changes in architectonic differentiation and present a novel high-performance, automated tree-ensemble method trained on data manually labeled by three human investigators. From the location and basic measures of neurons, more complex features are developed and used in machine learning models for automatic segmentation of cortical layers. Tree ensembles are used on data manually labeled by three human experts. The most accurate classification results were obtained by training three models separately and creating another ensemble by combining probability outputs for final neuron layer classification. Measurement of importances of developed neuron features on both global model level and individual prediction level are obtained.

[1]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[2]  E. H. Simpson Measurement of Diversity , 1949, Nature.

[3]  BieRongfang,et al.  Clustering by fast search and find of density peaks via heat diffusion , 2016 .

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  Xiting Wang,et al.  Towards better analysis of machine learning models: A visual analytics perspective , 2017, Vis. Informatics.

[6]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[7]  A. Hopf,et al.  Registration of the myeloarchitecture of the human frontal lobe with an extinction method. , 1968, Journal fur Hirnforschung.

[8]  A. Magurran,et al.  Measuring Biological Diversity , 2004 .

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[11]  Lana Vasung,et al.  The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community , 2011, Annals of the New York Academy of Sciences.

[12]  Arthur Zimek,et al.  Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection , 2015, ACM Trans. Knowl. Discov. Data.

[13]  J. Kaas The functional organization of somatosensory cortex in primates. , 1993, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[14]  Anna Veronika Dorogush,et al.  CatBoost: gradient boosting with categorical features support , 2018, ArXiv.

[15]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[16]  Hong Xie,et al.  Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning , 2018, Scientific Reports.

[17]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[18]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[19]  Scott M. Lundberg,et al.  Consistent Individualized Feature Attribution for Tree Ensembles , 2018, ArXiv.

[20]  Max Bramer,et al.  Principles of Data Mining , 2013, Undergraduate Topics in Computer Science.

[21]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[22]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[23]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[24]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[25]  H. Nagendra Opposite trends in response for the Shannon and Simpson indices of landscape diversity , 2002 .

[26]  Rongfang Bie,et al.  Clustering by fast search and find of density peaks via heat diffusion , 2016, Neurocomputing.

[27]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[28]  David M. Mount,et al.  It's okay to be skinny, if your friends are fat , 1999 .

[29]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[30]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[31]  L. Breiman Arcing the edge , 1997 .

[32]  Hong Xie,et al.  Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning , 2018 .

[33]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[34]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[35]  Vadim Turlapov,et al.  Automatic detection of neurons, astrocites, and layers for Nissl staining mouse cortex , 2017, J. WSCG.

[36]  A J Hudspeth,et al.  Cytoarchitectonic mapping by microdensitometry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[38]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[39]  Sven Loncaric,et al.  Automatic Detection of Neurons in NeuN-stained Histological Images of Human Brain , 2019, ArXiv.

[40]  Shuliang Wang,et al.  Comment on "Clustering by fast search and find of density peaks" , 2015, ArXiv.

[41]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[42]  Alan C. Evans,et al.  Mapping Cortical Laminar Structure in the 3D BigBrain , 2018, Cerebral cortex.

[43]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[44]  M. Ryzen,et al.  A microphotometric method of cell enumeration within the cerebral cortex of man , 1956, The Journal of comparative neurology.

[45]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[46]  Alan C. Evans,et al.  3D Localization of Neurons in Bright-Field Histological Images , 2018, 2018 International Symposium ELMAR.

[47]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .