Robust regression for mixed Poisson–Gaussian model

This paper focuses on efficient computational approaches to compute approximate solutions of a linear inverse problem that is contaminated with mixed Poisson–Gaussian noise, and when there are additional outliers in the measured data. The Poisson–Gaussian noise leads to a weighted minimization problem, with solution-dependent weights. To address outliers, the standard least squares fit-to-data metric is replaced by the Talwar robust regression function. Convexity, regularization parameter selection schemes, and incorporation of non-negative constraints are investigated. A projected Newton algorithm is used to solve the resulting constrained optimization problem, and a preconditioner is proposed to accelerate conjugate gradient Hessian solves. Numerical experiments on problems from image deblurring illustrate the effectiveness of the methods.

[1]  H. Sue Dollar,et al.  Constraint-Style Preconditioners for Regularized Saddle Point Problems , 2007, SIAM J. Matrix Anal. Appl..

[2]  Robert Serfling,et al.  Asymptotic Relative Efficiency in Estimation , 2011, International Encyclopedia of Statistical Science.

[3]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[4]  Dianne P. O'Leary,et al.  Fast robust regression algorithms for problems with Toeplitz structure , 2007, Comput. Stat. Data Anal..

[5]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[6]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[7]  Nicholas I. M. Gould,et al.  Using constraint preconditioners with regularized saddle-point problems , 2007, Comput. Optim. Appl..

[8]  Johnathan M. Bardsley,et al.  A Nonnegatively Constrained Convex Programming Method for Image Reconstruction , 2003, SIAM J. Sci. Comput..

[9]  L. Adkins Small sample performance of jackknife confidence intervals for the james-stein estimator , 1990 .

[10]  D. O’Leary Robust regression computation computation using iteratively reweighted least squares , 1990 .

[11]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[12]  Alessandra Staglianò,et al.  Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle , 2011 .

[13]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[14]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[15]  Per Christian Hansen,et al.  Least Squares Data Fitting with Applications , 2012 .

[16]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[17]  Brandoch Calef,et al.  Iteratively reweighted blind deconvolution , 2013, 2013 IEEE International Conference on Image Processing.

[18]  Dianne P. O’LEARYt ROBUST REGRESSION COMPUTATION USING ITERATIVELY REWEIGHTED LEAST SQUARES * , 2022 .

[19]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[20]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[21]  Johnathan M. Bardsley,et al.  Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation , 2009 .

[22]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[23]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[24]  Eldad Haber,et al.  Computational Methods in Geophysical Electromagnetics , 2014, Mathematics in Industry.

[25]  L. Zanni,et al.  A scaled gradient projection method for constrained image deblurring , 2008 .

[26]  J. Nagy,et al.  Enforcing nonnegativity in image reconstruction algorithms , 2000, SPIE Optics + Photonics.

[27]  Jian Yu,et al.  Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization , 2011, Pattern Recognit..

[28]  Michael K. Ng,et al.  Preconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems , 2005, SIAM J. Matrix Anal. Appl..

[29]  Jacques A. de Guise,et al.  A method for modeling noise in medical images , 2004, IEEE Transactions on Medical Imaging.

[30]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra, and Filtering (Fundamentals of Algorithms 3) (Fundamentals of Algorithms) , 2006 .

[31]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[32]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[33]  Jeffrey A. Fessler,et al.  Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction , 1999, IEEE Trans. Image Process..

[34]  J. Nagy,et al.  Quasi-Newton approach to nonnegative image restorations , 2000 .

[35]  James G. Nagy,et al.  Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.