Li-Yorke Chaos in Hybrid Systems on a Time Scale

By using the reduction technique to impulsive differential equations [1], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li-Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.

[1]  Ned J Corron,et al.  Exactly solvable chaos in an electromechanical oscillator. , 2013, Chaos.

[2]  Li Yang,et al.  Anti-periodic solution for impulsive BAM neural networks with time-varying leakage delays on time scales , 2015, Neurocomputing.

[3]  Yoshisuke Ueda,et al.  Random phenomena resulting from non-linearity in the system described by duffing's equation , 1985 .

[4]  M. O. Fen,et al.  Shunting inhibitory cellular neural networks with chaotic external inputs. , 2013, Chaos.

[5]  M. U. AKHMET,et al.  Dynamical Synthesis of Quasi-Minimal Sets , 2009, Int. J. Bifurc. Chaos.

[6]  Marat Akhmet,et al.  Differential equations on variable time scales , 2009 .

[7]  Marat Akhmet,et al.  Chaotification of Impulsive Systems by Perturbations , 2014, Int. J. Bifurc. Chaos.

[8]  M. Akhmet The complex dynamics of the cardiovascular system , 2009 .

[9]  M. U. Akhmet,et al.  Entrainment by Chaos , 2012, J. Nonlinear Sci..

[10]  Marat Akhmet,et al.  Chaotic period-doubling and OGY control for the forced Duffing equation , 2012 .

[11]  V. Lakshmikantham,et al.  Dynamic systems on measure chains , 1996 .

[12]  Marat Akhmet Shadowing and Dynamical Synthesis , 2009, Int. J. Bifurc. Chaos.

[13]  Li and Yorke chaos with respect to the cardinality of the scrambled sets , 2005 .

[14]  Ethan Akin,et al.  Li-Yorke sensitivity , 2003 .

[15]  N. Ibragimov Method of conservation laws for constructing solutions to systems of PDEs , 2012 .

[16]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[17]  M. Akhmet Devaney’s chaos of a relay system , 2009 .

[18]  Ai-Lian Liu,et al.  Boundedness and exponential stability of solutions to dynamic equations on time scales. , 2007 .

[19]  Michal Fečkan,et al.  On the chaotic behavior of non-flat billiards , 2014, Commun. Nonlinear Sci. Numer. Simul..

[20]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[21]  Guanrong Chen,et al.  Chaos of discrete dynamical systems in complete metric spaces , 2004 .

[22]  M. U. Akhmeta,et al.  The differential equations on time scales through impulsive differential equations , 2006 .

[23]  Jaqueline Godoy Mesquita,et al.  Almost automorphic solutions of dynamic equations on time scales , 2013 .

[24]  Wan-Tong Li,et al.  Periodic solutions for dynamic equations on time scales , 2007 .

[25]  V. Lakshmikantham,et al.  Hybrid systems with time scales and impulses , 2006 .

[26]  Peter E. Kloeden,et al.  Li–Yorke chaos in higher dimensions: a review , 2006 .

[27]  V. Lakshmikantham,et al.  Hybrid systems on time scales , 2002 .

[28]  C. Manchein,et al.  Characterizing weak chaos in nonintegrable Hamiltonian systems: The fundamental role of stickiness and initial conditions , 2014, 1401.1453.

[29]  Huaiping Zhu,et al.  Periodic solution of single population models on time scales , 2010, Math. Comput. Model..

[30]  Jorge Duarte,et al.  On chaos, transient chaos and ghosts in single population models with Allee effects , 2012 .

[31]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[32]  Marat Akhmet,et al.  Li-Yorke chaos in the system with impacts , 2009 .

[33]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[34]  Chaos: Generating Complexity from Simplicity , 1997 .

[35]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[36]  Guanrong Chen,et al.  Discrete chaos in Banach spaces , 2005 .

[37]  Leon O. Chua,et al.  Chaos and Complexity , 2001, Int. J. Bifurc. Chaos.

[38]  Michal Fečkan,et al.  Bifurcation and Chaos in Discontinuous and Continuous Systems , 2011 .

[39]  S. Kolyada,et al.  LI-Yorke sensitivity and other concepts of chaos , 2004 .

[40]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[41]  Richard M. Goodwin,et al.  Chaotic Economic Dynamics , 1990 .

[42]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[43]  Homoclinic orbits and periodic solutions for a class of Hamiltonian systems on time scales , 2014 .

[44]  Marat Akhmet,et al.  Attraction of Li-Yorke chaos by retarded SICNNs , 2015, Neurocomputing.

[45]  M. Akhmet Homoclinical structure of the chaotic attractor , 2010 .

[46]  John R. Graef,et al.  On the oscillation of third order neutral delay dynamic equations on time scales , 2012, Comput. Math. Appl..

[47]  Peter E. Kloeden,et al.  Chaotic difference equations in Rn , 1981 .

[48]  Celso Grebogi,et al.  The impact of chaos on science and society , 1997 .

[49]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[50]  Albert C. J. Luo,et al.  Toward Analytical Chaos in Nonlinear Systems: Luo/Toward Analytical Chaos in Nonlinear Systems , 2014 .

[51]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[52]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[53]  T Marshall,et al.  Chaos and complexity. , 1999, The British journal of general practice : the journal of the Royal College of General Practitioners.

[54]  Shi Hai Li,et al.  ω-Chaos and Topological Entropy , 1993 .

[55]  Yoshisuke Ueda Random Phenomena Resulting from Nonlinearity , 1978 .

[56]  M. O. Fen,et al.  Replication of Discrete Chaos , 2014 .

[57]  Marat Akhmet,et al.  Replication of chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[58]  Marat Akhmet,et al.  Principles of Discontinuous Dynamical Systems , 2010 .

[59]  Wolfgang A. Halang,et al.  Li–Yorke chaos in a spatiotemporal chaotic system , 2007 .

[60]  B. Aulbach,et al.  On Three Definitions of Chaos , 2001 .

[61]  K. G. Andersson Poincaré's discovery of homoclinic points , 1994 .

[62]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[63]  Jan Awrejcewicz,et al.  Bifurcation and Chaos , 1995 .

[64]  Albert C. J. Luo,et al.  Analytical Routes to Chaos in Nonlinear Engineering: Luo/Analytical Routes to Chaos in Nonlinear Engineering , 2014 .

[65]  Andrey Shilnikov,et al.  Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. , 2014, Chaos.

[66]  Christopher C. Tisdell,et al.  Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling , 2008 .

[67]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[68]  Albert C. J. Luo Toward Analytical Chaos in Nonlinear Systems , 2014 .

[69]  L. Chua,et al.  DYNAMICAL SYNTHESIS OF POINCARÉ MAPS , 1993 .

[70]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[71]  Josef Diblík,et al.  Asymptotic behavior of solutions of systems of dynamic equations on time scales in a set whose boundary is a combination of strict egress and strict ingress points , 2014, Appl. Math. Comput..