Probabilistic logic programming for hybrid relational domains

We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail.

[1]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[2]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[3]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[4]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[5]  L. De Raedt,et al.  Logical Hidden Markov Models , 2011, J. Artif. Intell. Res..

[6]  Leslie Pack Kaelbling,et al.  Logical Particle Filtering , 2007, Probabilistic, Logical and Relational Learning - A Further Synthesis.

[7]  J. Kadane Principles of Uncertainty , 2011 .

[8]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[9]  Wolfram Burgard,et al.  A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems , 2007, GfKl.

[10]  M. J. Bayarri,et al.  Particle Learning for Sequential Bayesian Computation , 2010 .

[11]  Eyal Amir,et al.  Sampling First Order Logical Particles , 2008, UAI.

[12]  Jaesik Choi,et al.  Lifted Relational Kalman Filtering , 2011, IJCAI.

[13]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[14]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[15]  A. Doucet,et al.  On-Line Parameter Estimation in General State-Space Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  Ulf Nilsson,et al.  Logic, programming and Prolog , 1990 .

[17]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[18]  Weng-Keen Wong,et al.  Logical Hierarchical Hidden Markov Models for Modeling User Activities , 2008, ILP.

[19]  Stuart J. Russell,et al.  BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.

[20]  Kitagawa Self organizing Time Series Model , 2001 .

[21]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[22]  Luc De Raedt,et al.  Distributional Clauses Particle Filter , 2014, ECML/PKDD.

[23]  Luc De Raedt,et al.  Stochastic relational processes: Efficient inference and applications , 2011, Machine Learning.

[24]  Nico Blodow,et al.  Cognition-Enabled Autonomous Robot Control for the Realization of Home Chore Task Intelligence , 2012, Proc. IEEE.

[25]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[26]  Stuart J. Russell,et al.  Probabilistic models with unknown objects , 2006 .

[27]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[28]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[29]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[30]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[31]  Luc De Raedt,et al.  On the Efficient Execution of ProbLog Programs , 2008, ICLP.

[32]  John W. Lloyd,et al.  Partial Evaluation in Logic Programming , 1991, J. Log. Program..

[33]  Luc De Raedt,et al.  Application of Dynamic Distributional Clauses for multi-hypothesis initialization in model-based object tracking , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[34]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[35]  Teodor C. Przymusinski Perfect Model Semantics , 1988, ICLP/SLP.

[36]  Eyal Amir,et al.  First-Order Logical Filtering , 2005, IJCAI.

[37]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[38]  Krzysztof R. Apt,et al.  From logic programming to Prolog , 1996, Prentice Hall International series in computer science.

[39]  Subrata Das,et al.  Factored reasoning for monitoring dynamic team and goal formation , 2009, Inf. Fusion.

[40]  Moritz Tenorth,et al.  KNOWROB — knowledge processing for autonomous personal robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Kuo-Chu Chang,et al.  Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks , 2013, UAI.

[42]  Leonid Peshkin,et al.  Factored Particles for Scalable Monitoring , 2002, UAI.

[43]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[44]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming - Theory and Applications , 2008, Probabilistic Inductive Logic Programming.

[45]  Tomoyuki Higuchi,et al.  Self-Organizing Time Series Model , 2001, Sequential Monte Carlo Methods in Practice.

[46]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[47]  Henry A. Kautz,et al.  Slice Normalized Dynamic Markov Logic Networks , 2012, NIPS.

[48]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[49]  Stuart J. Russell,et al.  Approximate Inference for Infinite Contingent Bayesian Networks , 2005, AISTATS.

[50]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[51]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[52]  Nicholas G. Polson,et al.  Particle learning for general mixtures , 2010 .

[53]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[54]  Enza Messina,et al.  A Particle Filtering Approach for Tracking an Unknown Number of Objects with Dynamic Relations , 2014, J. Math. Model. Algorithms Oper. Res..

[55]  Luc De Raedt,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming the Magic of Logical Inference in Probabilistic Programming , 2022 .

[56]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[57]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[58]  Luc De Raedt,et al.  A particle filter for hybrid relational domains , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Luc De Raedt,et al.  Relational object tracking and learning , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).