Underwater intervention robotics: An outline of the Italian national project Maris

The Italian national project MARIS (Marine Robotics for InterventionS) pursues the strategic objective of studying, developing and integrating technologies and methodologies enabling the development of autonomous underwater robotic systems employable for intervention activities, which are becoming progressively more typical for the underwater offshore industry, for search-and-rescue operations, and for underwater scientific missions. Within such an ambitious objective, the project consortium also intends to demonstrate the achievable operational capabilities at a proof-of-concept level, by integrating the results with prototype experimental

[1]  Giuseppe Casalino,et al.  Whole body control of a dual arm underwater vehicle manipulator system , 2015, Annu. Rev. Control..

[2]  Giuseppe Casalino,et al.  Floating Underwater Manipulation: Developed Control Methodology and Experimental Validation within the TRIDENT Project , 2014, J. Field Robotics.

[3]  Gianmarco Veruggio,et al.  Real-time optical SLAM-based mosaicking for unmanned underwater vehicles , 2012, Intell. Serv. Robotics.

[4]  J. Yuh,et al.  Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM) , 1998, Proceedings of 1998 International Symposium on Underwater Technology.

[5]  Giorgio Cannata,et al.  A novel tactile sensor for underwater applications: Limits and perspectives , 2015, OCEANS 2015 - Genova.

[6]  Antonella Ferrara,et al.  AMADEUS: advanced manipulation for deep underwater sampling , 1997, IEEE Robotics Autom. Mag..

[7]  A. Caiti,et al.  Localization of autonomous underwater vehicles by floating acoustic buoys: a set-membership approach , 2005, IEEE Journal of Oceanic Engineering.

[8]  Giuseppe Casalino,et al.  A Task & Subsystem Priority Based Control Strategy for Underwater Floating Manipulators , 2012 .

[9]  A. Srivastava,et al.  Geodesic shape distance and integral invariant shape features for automatic target recognition , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[10]  Gianluca Dini,et al.  Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network , 2012, Sensors.

[11]  Gianluca Palli,et al.  Development of an optoelectronic 6-axis force/torque sensor for robotic applications ☆ , 2014 .

[12]  Shahriar Negahdaripour,et al.  Efficient three‐dimensional scene modeling and mosaicing , 2009, J. Field Robotics.

[13]  Gianluca Antonelli,et al.  Task-priority redundancy resolution for underwater vehicle-manipulator systems , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  Gerd Hirzinger,et al.  Grasp planning: how to choose a suitable task wrench space , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  S. Chiaverini,et al.  Singularity-free regulation of underwater vehicle-manipulator systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[16]  E. Malis,et al.  3D Reconstruction of Natural Underwater Scenes Using the Stereovision System IRIS , 2007, OCEANS 2007 - Europe.

[17]  G. Cossu,et al.  Experimental demonstration of high speed underwater visible light communications , 2013, 2013 2nd International Workshop on Optical Wireless Communications (IWOW).

[18]  王启明,et al.  Optical fiber based slide tactile sensor for underwater robots , 2008 .

[19]  Giuseppe Casalino,et al.  Distributed Control and Coordination of Cooperative Mobile Manipulator Systems , 2008, DARS.

[20]  Rafael García,et al.  Surface reconstruction methods for the recovery of 3D models from underwater interest areas , 2011, OCEANS 2011 IEEE - Spain.

[21]  Gianfranco Parlangeli,et al.  Single Range Localization in 3-D: Observability and Robustness Issues , 2016, IEEE Transactions on Control Systems Technology.

[22]  Gianluca Antonelli,et al.  Kinematic control of a platoon of autonomous vehicles , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  John F. Canny,et al.  Planning optimal grasps , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[24]  Stefano Caselli,et al.  Interactive teaching of task-oriented robot grasps , 2010, Robotics Auton. Syst..

[25]  Stefano Caselli,et al.  Investigation of Vision-Based Underwater Object Detection with Multiple Datasets , 2015 .

[26]  P. Kampmann,et al.  A Tactile Sensing System for Underwater Manipulators , 2012 .

[27]  Gianfranco Parlangeli,et al.  Single Range Observability for Cooperative Underactuated Underwater Vehicles , 2014 .

[28]  António Manuel Santos Pascoal,et al.  Observability metric for the relative localization of AUVs based on range and depth measurements: Theory and experiments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Giuseppe Casalino,et al.  Guidelines for a distributed functional and algorithmic control architecture for underwater free-flying multi-manipulators , 2010, Proceedings ELMAR-2010.

[30]  Gianluca Antonelli,et al.  Obstacle Avoidance for a Platoon of Autonomous Underwater Vehicles , 2003 .

[31]  Stefano Caselli,et al.  An underwater stereo vision system: From design to deployment and dataset acquisition , 2015, OCEANS 2015 - Genova.

[32]  G. N. Roberts,et al.  Editorial: navigation, guidance and control of unmanned marine vehicles , 2006 .

[33]  Giorgio Cannata,et al.  A New Tactile Sensor for Robotic Underwater Applications , 1999, IIA/SOCO.

[34]  Stefano Caselli,et al.  Object categorization and grasping by parts from range scan data , 2012, 2012 IEEE International Conference on Robotics and Automation.

[35]  M. Caccia,et al.  Modeling and identification of open-frame variable configuration unmanned underwater vehicles , 2000, IEEE Journal of Oceanic Engineering.

[36]  Giuseppe Casalino,et al.  Cooperation between autonomous underwater vehicle manipulations systems with minimal information exchange , 2015, OCEANS 2015 - Genova.

[37]  G. Palli,et al.  On the bandwidth of 6-axis force/torque sensors for underwater applications , 2015, OCEANS 2015 - Genova.

[38]  Junku Yuh,et al.  Introduction to Autonomous Manipulation - Case Study with an Underwater Robot, SAUVIM , 2014, Springer Tracts in Advanced Robotics.

[39]  Giuseppe Casalino,et al.  Coordination and control of multiarm, non-holonomic mobile manipulators , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[40]  Giuseppe Casalino,et al.  On autonomous cooperative Underwater Floating Manipulation Systems , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Fabjan Kallasi,et al.  Computer vision in underwater environments: A multiscale graph segmentation approach , 2015, OCEANS 2015 - Genova.

[42]  Pedro J. Sanz,et al.  An open source tool for simulation and supervision of underwater intervention missions , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Dmitry Berenson,et al.  Grasp planning in complex scenes , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.