Symbolic photograph content-based retrieval

Photograph retrieval systems face the difficulty to deal with the different ways to apprehend the content of images. We consider and demonstrate here the use of multiple index representations of photographs to achieve effective retrieval. The use of multiple indexes allows integration of the complementary strengths of different indexing and retrieval models. The proposed representation supports multiple labels for regions and attributes, and handles inferences and relationships. We define links between indexing levels and the related query modes. The experiment conducted on 2400 home photographs shows the behavior of the multiple indexing levels during retrieval.

[1]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[2]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[3]  Sai Ravela,et al.  Appearance-Based Global Similarity Retrieval of Images , 2002 .

[4]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[5]  Iadh Ounis,et al.  RELIEF: combining expressiveness and rapidity into a single system , 1998, SIGIR '98.

[6]  Philippe Mulhem,et al.  Interactive information retrieval systems: from user centered interface design to software design , 1996, SIGIR '96.

[7]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jong-Hak Lee,et al.  Analyses of multiple evidence combination , 1997, SIGIR '97.

[9]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[10]  Ben Bradshaw,et al.  Semantic based image retrieval: a probabilistic approach , 2000, ACM Multimedia.

[11]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[12]  R. Jain,et al.  Visual Information Retrieval Technology A Virage Perspective , 1997 .

[13]  Joo-Hwee Lim Explicit query formulation with visual keywords , 2000, ACM Multimedia.

[14]  Stuart C. Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[15]  Joo-Hwee Lim Fuzzy object patterns for visual indexing and segmentation , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[16]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[17]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Shih-Fu Chang,et al.  Tools and techniques for color image retrieval , 1996, Electronic Imaging.

[19]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[20]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[21]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[22]  Joo-Hwee Lim Building Visual Vocabulary for Image Indexation and Query Formulation , 2001, Pattern Analysis & Applications.

[23]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[24]  Mourad Mechkour,et al.  EMIR2: An Extended Model for Image Representation and Retrieval , 1995, DEXA.

[25]  W. Bruce Croft,et al.  Combining Automatic and Manual Index Representations in Probabilistic Retrieval , 1995, J. Am. Soc. Inf. Sci..

[26]  Corinne Jörgensen,et al.  Attributes of Images in Describing Tasks , 1998, Inf. Process. Manag..

[27]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[28]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[29]  Nicholas J. Belkin,et al.  The effect multiple query representations on information retrieval system performance , 1993, SIGIR.

[30]  Terry E. Weymouth,et al.  Semantic Queries with Pictures: The VIMSYS Model , 1991, VLDB.

[31]  Takeo Kanade,et al.  Rotation Invariant Neural Network-Based Face Detection , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).