METAMODELING A SYSTEM DYNAMICS MODEL : A CONTEMPORARY COMPARISON OF METHODS
暂无分享,去创建一个
Gabriel A. Wainer | N. Mustafee | A. D’Ambrogio | G. Wainer | G. Zacharewicz | N. Mustafee | A. D’Ambrogio | W. Chan | G. Zacharewicz | E. Page | W. K. V. Chan | E. Page
[1] Barry L. Nelson,et al. Stochastic kriging for simulation metamodeling , 2008, WSC 2008.
[2] J. Friedman. Stochastic gradient boosting , 2002 .
[3] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[4] A. Gelfand,et al. Handbook of spatial statistics , 2010 .
[5] Thomas J. Santner,et al. Design and analysis of computer experiments , 1998 .
[6] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[7] Chen-Fu Chien,et al. Efficient development of cycle time response surfaces using progressive simulation metamodeling , 2014 .
[8] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[9] Franccois Bachoc,et al. Calibration and Improved Prediction of Computer Models by Universal Kriging , 2013, 1301.4114.
[10] Julian D. Olden,et al. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks , 2002 .
[11] Barry L. Nelson,et al. Moving Least Squares regression for high dimensional simulation metamodeling , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[12] Ying Hung,et al. PENALIZED BLIND KRIGING IN COMPUTER EXPERIMENTS , 2011 .
[13] Xi Chen. Enhancing Stochastic Kriging Metamodels for Computer Simulation , 2012 .
[14] G. Gary Wang,et al. Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.
[15] Raymond L. Smith,et al. Sensitivity analysis for a whole hospital system dynamics model , 2014, Proceedings of the Winter Simulation Conference 2014.
[16] G. Box,et al. Introduction to Response Surface Methodology , 2006 .
[17] Jeremy Staum,et al. Better simulation metamodeling: The why, what, and how of stochastic kriging , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).
[18] Hans-Peter Piepho,et al. A comparison of random forests, boosting and support vector machines for genomic selection , 2011, BMC proceedings.
[19] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[20] Jack P. C. Kleijnen,et al. Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..
[21] Trevor J. Ringrose,et al. GAMLSS and neural networks in combat simulation metamodelling: A case study , 2013, Expert Syst. Appl..
[22] Gabriella Dellino,et al. Robust simulation optimization methods using Kriging metamodels , 2009 .
[23] Yunqian Ma,et al. Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.
[24] G. Box,et al. On the Experimental Attainment of Optimum Conditions , 1951 .
[25] Jack P. C. Kleijnen,et al. Kriging metamodeling in constrained simulation optimization: an explorative study , 2007, 2007 Winter Simulation Conference.
[26] Jack P. C. Kleijnen,et al. Stochastic Intrinsic Kriging for Simulation Metamodelling , 2015 .