Electromotive force in the Blandford–Znajek process

One of the mechanisms widely considered for driving relativistic jets in active galactic nuclei, Galactic microquasars and gamma-ray bursts is the electromagnetic extraction of the rotational energy of a central black hole, i.e. the Blandford–Znajek process, although the origin of the electromotive force in this process is still under debate. We study this process as the steady unipolar induction in the Kerr black hole magnetosphere filled with a collisionless plasma screening the electric field (the D field) along the magnetic field (the B field), i.e. D · B = 0. We extend the formulations and arguments made by Komissarov, and generally show that the origin of the electromotive force is ascribed to the ergosphere. It is explicitly shown that open magnetic field lines penetrating the ergosphere have a region where the D field is stronger than the B field in the ergosphere, and it keeps driving the poloidal currents and generating the electromotive force and the outward Poynting flux. The range of the possible value of the so-called angular velocity of the magnetic field line Ω_F is deduced for the field lines threading the equatorial plane in the ergosphere. We briefly discuss the relation between our conclusion and the ideal magnetohydrodynamic condition.

[1]  R. Narayan,et al.  General relativistic magnetohydrodynamic simulations of Blandford-Znajek jets and the membrane paradigm , 2013, 1307.4752.

[2]  K. Toma,et al.  Efficient Acceleration of Relativistic Magnetohydrodynamic Jets , 2013, 1303.2744.

[3]  D. Papadopoulos,et al.  THE FORCE-FREE MAGNETOSPHERE OF A ROTATING BLACK HOLE , 2012, 1212.0320.

[4]  Peculiar Black-Hole Unipolar Induction , 2012 .

[5]  K. Toma,et al.  BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS , 2012, 1205.6868.

[6]  T. Piran,et al.  Collisional Penrose process near the horizon of extreme Kerr black holes. , 2012, Physical review letters.

[7]  M. Ruiz,et al.  The role of the ergosphere in the Blandford–Znajek process , 2012, 1203.4125.

[8]  Santabrata Das,et al.  DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION , 2011 .

[9]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[10]  Govind Menon,et al.  Jet formation in the magnetospheres of supermassive black holes: analytic solutions describing energy loss through Blandford–Znajek processes , 2011, 1105.4139.

[11]  V. S. Beskin,et al.  Magnetohydrodynamic models of astrophysical jets , 2010 .

[12]  S. Komissarov,et al.  Activation of the Blandford–Znajek mechanism in collapsing stars , 2009, 0902.2881.

[13]  K. Asano,et al.  A RELATIVISTIC ELECTRON–POSITRON OUTFLOW FROM A TEPID FIREBALL , 2008, 0812.2102.

[14]  S. Komissarov Blandford-Znajek mechanism versus Penrose process , 2008, 0804.1912.

[15]  S.S.Komissarov,et al.  The ‘Meissner effect’ and the Blandford–Znajek mechanism in conductive black hole magnetospheres , 2007, astro-ph/0702269.

[16]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[17]  Govind Menon,et al.  Analytic Solutions to the Constraint Equation for a Force-free Magnetosphere around a Kerr Black Hole , 2005, astro-ph/0509130.

[18]  A. Levinson Energy Extraction from a Kerr Black Hole - An Ultimate Power Source in the Universe? , 2005, astro-ph/0502346.

[19]  S. Komissarov Observations of the Blandford–Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres , 2005, astro-ph/0501599.

[20]  Simon P.Goodwin,et al.  An idealized pulsar magnetosphere: the relativistic force-free approximation , 2004, astro-ph/0407227.

[21]  S. Komissarov General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes , 2004, astro-ph/0402430.

[22]  S. S. Komissarov,et al.  Electrodynamics of black hole magnetospheres , 2004, astro-ph/0402403.

[23]  D. Meier,et al.  Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets , 2002, Science.

[24]  B. Punsly,et al.  Black hole gravitohydromagnetics , 2001 .

[25]  R. Rafikov,et al.  On the particle acceleration near the light surface of radio pulsars , 2000 .

[26]  I. Okamoto,et al.  Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole , 1998 .

[27]  R. Khanna On the magnetohydrodynamic description of a two-component plasma in the Kerr metric , 1998, astro-ph/9803088.

[28]  A. Melatos,et al.  Energy transport in a rotation-modulated pulsar wind , 1996 .

[29]  Y. Tatematsu,et al.  Magnetohydrodynamic flows in Kerr geometry : energy extraction from black holes , 1990 .

[30]  B. Paczyński Super-Eddington winds from neutron stars , 1990 .

[31]  F. Coroniti,et al.  Ergosphere Driven Winds , 1990 .

[32]  Coroniti,et al.  Electrodynamics of the event horizon. , 1989, Physical review. D, Particles and fields.

[33]  Kip S. Thorne,et al.  Electrodynamics in curved spacetime: 3 + 1 formulation , 1982 .

[34]  J. Bekenstein,et al.  New conservation laws in general-relativistic magnetohydrodynamics , 1978 .

[35]  R. D. Blandford,et al.  Accretion Disc Electrodynamics — A Model for Double Radio Sources , 1976 .

[36]  R. Lovelace,et al.  Dynamo model of double radio sources , 1976, Nature.

[37]  J. Lasota,et al.  Black Holes and Magnetic Fields , 1975 .

[38]  R. Wald,et al.  Black hole in a uniform magnetic field , 1974 .

[39]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[40]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .