Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials

As a digital version of metamaterials, coding and programmable metamaterials have experienced rapid development since they were initially proposed in 2014. Unlike conventional metamaterials that are characterized by the sophisticated effective medium theory, coding metamaterials are described in a much simpler manner with binary codes, which builds up a bridge between the physical world and the digital world. In this article, the development of coding and programmable metamaterials in the past three years is reviewed, focusing primarily on the basic concept, working principle, design method, fabrication, and experimental validation. First, reflection-type and refraction-type coding metamaterials, along with two bifunctional coding metamaterials, are presented in the microwave, terahertz, and acoustic regimes. Second, the digital convolution theorem and information entropy of coding metamaterials are introduced to demonstrate the strong connection between metamaterials and information science. Then, recent progresses on engineering realization of field-programmable metamaterials are demonstrated, including the compensation technique of plane waves under point source illumination, and applications in single-sensor single-frequency imaging systems. Finally, future directions and potential applications are summarized, followed by discussions on major challenges encountered in the design and fabrication of programmable metamaterials at higher frequencies.

[1]  Shuang Zhang,et al.  Creation of Ghost Illusions Using Wave Dynamics in Metamaterials , 2013 .

[2]  Qiang Cheng,et al.  Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[3]  Tian Yi Chen,et al.  Field-programmable beam reconfiguring based on digitally-controlled coding metasurface , 2016, Scientific Reports.

[4]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[5]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[6]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[7]  David R. Smith,et al.  Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Qiang Cheng,et al.  Illusion media: Generating virtual objects using realizable metamaterials , 2009, 0909.3619.

[9]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[10]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[11]  Atef Z. Elsherbeni,et al.  Bifocal Design and Aperture Phase Optimizations of Reflectarray Antennas for Wide-Angle Beam Scanning Performance , 2013, IEEE Transactions on Antennas and Propagation.

[12]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[13]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[14]  Xiangang Luo,et al.  Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface , 2017, Scientific Reports.

[15]  Zhengyou Liu,et al.  Coding Acoustic Metasurfaces , 2017, Advanced materials.

[16]  Tie Jun Cui,et al.  Information metamaterials and metasurfaces , 2017 .

[17]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[18]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[19]  T. Cui,et al.  A bi-layered quad-band metamaterial absorber at terahertz frequencies , 2015 .

[20]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[21]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[22]  A. Grbic,et al.  Experimental verification of backward-wave radiation from a negative refractive index metamaterial , 2002 .

[23]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[24]  Tie Jun Cui,et al.  An ultrathin directional carpet cloak based on generalized Snell's law , 2013 .

[25]  Jiaxiong Fang,et al.  Fast Active-Quenching Circuit for Free-Running InGaAs(P)/InP Single-Photon Avalanche Diodes , 2016, IEEE Journal of Quantum Electronics.

[26]  Yongtian Wang,et al.  Spin and wavelength multiplexed nonlinear metasurface holography , 2016, Nature Communications.

[27]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[29]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[30]  Maokun Li,et al.  A programmable metasurface with dynamic polarization, scattering and focusing control , 2016, Scientific Reports.

[31]  Huili Grace Xing,et al.  Terahertz imaging employing graphene modulator arrays. , 2013, Optics express.

[32]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[33]  G. Eleftheriades,et al.  Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation , 2014, IEEE Transactions on Antennas and Propagation.

[34]  Atef Z. Elsherbeni,et al.  Beam-Scanning Reflectarray Antennas: A technical overview and state of the art. , 2015, IEEE Antennas and Propagation Magazine.

[35]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[36]  T. Sarkar,et al.  Minimum norm property for the sum of the adaptive weights for a direct data domain least squares algorithm , 2006, IEEE Transactions on Antennas and Propagation.

[37]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[38]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[39]  C. Rockstuhl,et al.  3D THz metamaterials from micro/nanomanufacturing , 2012 .

[40]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[41]  Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits , 2014, 1409.2685.

[42]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[43]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[44]  H. Kamoda,et al.  60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[45]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[46]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[47]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[48]  R. Ziolkowski Design, fabrication, and testing of double negative metamaterials , 2003 .

[49]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[50]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[51]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[52]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[53]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[54]  S A Tretyakov,et al.  Functional Metamirrors Using Bianisotropic Elements , 2015 .

[55]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[56]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[57]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[58]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[59]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[60]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[61]  Yang Cao,et al.  An ultrathin twist-structure polarization transformer based on fish-scale metallic wires , 2011 .

[62]  Kuang Zhang,et al.  Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions , 2014 .

[63]  Zhen Tian,et al.  Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode , 2012 .

[64]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[65]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[66]  P. Mounaix,et al.  Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications. , 2013, Optics Letters.

[67]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[68]  N. Seddon,et al.  Observation of the Inverse Doppler Effect , 2003, Science.

[69]  Qiang Cheng,et al.  Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces , 2016 .

[70]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[71]  Changtao Wang,et al.  Dual-band asymmetry chiral metamaterial based on planar spiral structure , 2012 .

[72]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[73]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[74]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[75]  Houtong Chen,et al.  Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials , 2015 .

[76]  Jinghua Teng,et al.  Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices , 2016, Advanced materials.

[77]  Ariel Epstein,et al.  Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures , 2015, Nature Communications.

[78]  M F Crommie,et al.  Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. , 2015, Nano letters.

[79]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[80]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[81]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[82]  Ekmel Ozbay,et al.  Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. , 2011, Optics letters.

[83]  Andrea Alù,et al.  A Reconfigurable Active Huygens' Metalens. , 2017, Advanced materials.

[84]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[85]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[86]  Tie Jun Cui,et al.  Flexible controls of scattering clouds using coding metasurfaces , 2016, Scientific Reports.

[87]  T. Cui,et al.  Broadband All‐Dielectric Magnifying Lens for Far‐Field High‐Resolution Imaging , 2013, Advanced materials.

[88]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[89]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[90]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[91]  João Valente,et al.  Two-dimensional control of light with light on metasurfaces , 2016, Light: Science & Applications.

[92]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[93]  Gengkai Hu,et al.  Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency , 2016, Advanced materials.

[94]  Ming Lu,et al.  Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. , 2017, Nature nanotechnology.

[95]  Jianguo Tian,et al.  Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces , 2017 .

[96]  C. Jin,et al.  Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[98]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[99]  Weili Zhang,et al.  A Tunable Dispersion‐Free Terahertz Metadevice with Pancharatnam–Berry‐Phase‐Enabled Modulation and Polarization Control , 2015, Advanced materials.

[100]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[101]  Miguel Beruete,et al.  Experimental Demonstration of Metasurface‐Based Ultrathin Carpet Cloaks for Millimeter Waves , 2017 .

[102]  Fan Yang,et al.  A 1-Bit $10 \times 10$ Reconfigurable Reflectarray Antenna: Design, Optimization, and Experiment , 2016, IEEE Transactions on Antennas and Propagation.

[103]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[104]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[105]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[106]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[107]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[108]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[109]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[110]  Sailing He,et al.  90° polarization rotator using a bilayered chiral metamaterial with giant optical activity , 2010 .

[111]  E. E. Narimanov,et al.  The left hand of brightness: past, present and future of negative index materials , 2006, Nature materials.

[112]  S. Maier,et al.  Terahertz All-Dielectric Magnetic Mirror Metasurfaces , 2016 .

[113]  Qiang Cheng,et al.  Frequency‐Dependent Dual‐Functional Coding Metasurfaces at Terahertz Frequencies , 2016 .

[114]  Xiang Zhai,et al.  A novel dual-band terahertz metamaterial absorber for a sensor application , 2015 .

[115]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.