Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data

AbstractIn-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water ...

[1]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[2]  E. Fetzer,et al.  The Observed State of the Water Cycle in the Early Twenty-First Century , 2015 .

[3]  Christian D. Kummerow,et al.  The Remote Sensing of Clouds and Precipitation from Space: A Review , 2007 .

[4]  Philippe Richaume,et al.  SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates , 2016 .

[5]  Martha C. Anderson,et al.  Estimating annual water storage variations in medium-scale (2000–10 000 km 2 ) basins using microwave-based soil moisture retrievals , 2017 .

[6]  Sujay V. Kumar,et al.  Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability , 2017 .

[7]  Hans-Jörg Vogel,et al.  Modeling Soil Processes: Review, Key Challenges, and New Perspectives , 2016 .

[8]  D. Entekhabi,et al.  Mapped Hydroclimatology of Evapotranspiration and Drainage Runoff Using SMAP Brightness Temperature Observations and Precipitation Information , 2019, Water Resources Research.

[9]  Martha C. Anderson,et al.  The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources , 2017 .

[10]  George M. Hornberger,et al.  Challenges and Opportunities in the Hydrologic Sciences , 2012 .

[11]  Lutz Weihermüller,et al.  A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves , 2017 .

[12]  Nico Sneeuw,et al.  A quantile function approach to discharge estimation from satellite altimetry (ENVISAT) , 2013 .

[13]  W. Wagner,et al.  Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data , 2014 .

[14]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[15]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[16]  M. Wong,et al.  Analytical solutions to the one-dimensional oxide-silicon-oxide system , 2003 .

[17]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[18]  Luca Brocca,et al.  Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region , 2019, Remote Sensing of Environment.

[19]  F. Landerer,et al.  Emerging trends in global freshwater availability , 2018, Nature.

[20]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[21]  W. Wagner,et al.  A new method for rainfall estimation through soil moisture observations , 2013 .

[22]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[23]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements , 2011 .

[24]  A. W. Warrick,et al.  ANALYTICAL SOLUTIONS TO THE ONE‐DIMENSIONAL LINEARIZED MOISTURE FLOW EQUATION FOR ARBITRARY INPUT , 1975 .

[25]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[26]  D. Entekhabi,et al.  Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation , 2018 .

[27]  J. Finch Estimating direct groundwater recharge using a simple water balance model – sensitivity to land surface parameters , 1998 .

[28]  F. Aires,et al.  Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region , 2018, Hydrology and Earth System Sciences.

[29]  S. Swenson,et al.  Quantifying renewable groundwater stress with GRACE , 2015, Water resources research.

[30]  Paul Berrisford,et al.  The role of horizontal resolution in simulating drivers of the global hydrological cycle , 2014, Climate Dynamics.

[31]  A. Al Bitar,et al.  Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms , 2017 .

[32]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[33]  Luca Brocca,et al.  Precipitation estimation using L‐band and C‐band soil moisture retrievals , 2016, Water resources research.

[34]  Carlos Jimenez,et al.  On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets , 2015 .

[35]  Andreas Colliander,et al.  SMAP soil moisture improves global evapotranspiration , 2018, Remote Sensing of Environment.

[36]  Luca Brocca,et al.  How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[37]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[38]  Xubin Zeng,et al.  Improving the Numerical Solution of Soil Moisture-Based Richards Equation for Land Models with a Deep or Shallow Water Table , 2009 .

[39]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[40]  Joseph A. Santanello,et al.  Irrigation Signals Detected From SMAP Soil Moisture Retrievals , 2017 .

[41]  Nico Sneeuw,et al.  Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances* , 2014 .

[42]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[43]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[44]  Ardeshir M. Ebtehaj,et al.  Microwave retrievals of terrestrial precipitation over snow-covered surfaces: a lesson from the GPM satellite. , 2017 .

[45]  Xubin Zeng,et al.  Impact of Modified Richards Equation on Global Soil Moisture Simulation in the Community Land Model (CLM3.5) , 2009 .

[46]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[47]  Jason J. Gurdak Groundwater: Climate-induced pumping , 2017 .

[48]  Joshua B. Fisher,et al.  Measuring water availability with limited ground data: assessing the feasibility of an entirely remote‐sensing‐based hydrologic budget of the Rufiji Basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS , 2014 .

[49]  Adam J. Purdy,et al.  Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally , 2016 .

[50]  Joshua B. Fisher,et al.  What controls the error structure in evapotranspiration models , 2013 .

[51]  Scott B. Jones,et al.  An analytical model for estimation of land surface net water flux from near-surface soil moisture observations , 2019, Journal of Hydrology.

[52]  Cheng-Haw Lee,et al.  Estimation of groundwater recharge using water balance model , 2007 .

[53]  Wade T. Crow,et al.  Estimating Basin‐Scale Water Budgets With SMAP Soil Moisture Data , 2018, Water resources research.

[54]  M. Bierkens,et al.  Nonsustainable groundwater sustaining irrigation: A global assessment , 2012 .

[55]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[56]  S. Seneviratne,et al.  GRUN: An observations-based global gridded runoff dataset from 1902 to 2014 , 2019 .

[57]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[58]  Miroslav Šejna,et al.  Recent Developments and Applications of the HYDRUS Computer Software Packages , 2016 .

[59]  A. Al Bitar,et al.  Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets. , 2017, Remote sensing of environment.

[60]  Efi Foufoula-Georgiou,et al.  Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[62]  Filipe Aires,et al.  Analyzing the Mediterranean Water Cycle Via Satellite Data Integration , 2018, Pure and Applied Geophysics.

[63]  S. Seneviratne,et al.  GRUN: an observation-based global gridded runoff dataset from 1902 to 2014 , 2019, Earth System Science Data.

[64]  Luca Brocca,et al.  Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data , 2019, Hydrology and Earth System Sciences.

[65]  S. Seneviratne,et al.  Observational Constraints Reduce Likelihood of Extreme Changes in Multidecadal Land Water Availability , 2019, Geophysical research letters.

[66]  J. Fisher,et al.  Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen , 2012, Water Resources Management.

[67]  Dara Entekhabi,et al.  Global characterization of surface soil moisture drydowns , 2017 .