The cat-1 Gene of Caenorhabditis elegansEncodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors

We have identified the Caenorhabditis eleganshomolog of the mammalian vesicular monoamine transporters (VMATs); it is 47% identical to human VMAT1 and 49% identical to human VMAT2.C. elegans VMAT is associated with synaptic vesicles in ∼25 neurons, including all of the cells reported to contain dopamine and serotonin, plus a few others. When C. elegans VMAT is expressed in mammalian cells, it has serotonin and dopamine transport activity; norepinephrine, tyramine, octopamine, and histamine also have high affinity for the transporter. The pharmacological profile of C. elegans VMAT is closer to mammalian VMAT2 than VMAT1. The C. elegans VMAT gene iscat-1; cat-1 knock-outs are totally deficient for VMAT immunostaining and for dopamine-mediated sensory behaviors, yet they are viable and grow relatively well. Thecat-1 mutant phenotypes can be rescued by C. elegans VMAT constructs and also (at least partially) by human VMAT1 or VMAT2 transgenes. It therefore appears that the function of amine neurotransmitters can be completely dependent on their loading into synaptic vesicles.

[1]  T. Bonner,et al.  Cloning and expression of the vesamicol binding protein from the marine ray Torpedo , 1994, FEBS letters.

[2]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[3]  Cori Bargmann,et al.  Control of larval development by chemosensory neurons in Caenorhabditis elegans. , 1991, Science.

[4]  W. Schafer,et al.  A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans , 1995, Nature.

[5]  H. Mclennan,et al.  Synaptic Transmission , 2003 .

[6]  Hongjuan Zhao,et al.  Synaptic Transmission Deficits in Caenorhabditis elegansSynaptobrevin Mutants , 1998, The Journal of Neuroscience.

[7]  G. Ruvkun,et al.  Control of Neural Development and Function in a Thermoregulatory Network by the Lim Homeobox Gene Lin-11 , 2022 .

[8]  J. Tam,et al.  A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. , 1988, The Journal of biological chemistry.

[9]  D. Weinshenker,et al.  Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Albertson Formation of the first cleavage spindle in nematode embryos. , 1984, Developmental biology.

[11]  G. E. Dean,et al.  Cloning and functional expression of a tetrabenazine sensitive vesicular monoamine transporter from bovine chromaffin granules , 1994, FEBS letters.

[12]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[13]  A. Stretton,et al.  Neuronal localization of serotonin in Ascaris suum , 1996, The Journal of comparative neurology.

[14]  J. Sulston,et al.  Dopaminergic neurons in the nematode Caenorhabditis elegans , 1975, The Journal of comparative neurology.

[15]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[16]  S. Brenner,et al.  Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. , 1977, Genetics.

[17]  Gary Ruvkun,et al.  The unc-86 gene product couples cell lineage and cell identity in C. elegans , 1990, Cell.

[18]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[19]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[20]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[21]  V. M. Pickel,et al.  The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. C. Torre An improved approach to histofluorescence using the SPG method for tissue monoamines , 1980, Journal of Neuroscience Methods.

[23]  R. Waterston,et al.  Vinculin is essential for muscle function in the nematode , 1991, The Journal of cell biology.

[24]  R. Palmiter,et al.  Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development , 1995, Nature.

[25]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Bonner,et al.  Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Eiden,et al.  Functional Identification and Molecular Cloning of a Human Brain Vesicle Monoamine Transporter , 1993, Journal of neurochemistry.

[28]  D. Riddle,et al.  Synaptic Transmission -- C. elegans II , 1997 .

[29]  G. Ruvkun,et al.  Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene , 1997, Neuron.

[30]  R. Waterston,et al.  A suppressor mutation in the nematode acting on specific alleles of many genes , 1978, Nature.

[31]  R. Palmiter,et al.  Noradrenaline is essential for mouse fetal development , 1995, Nature.

[32]  A. Otsuka,et al.  The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein , 1991, Neuron.

[33]  B. Hoffman,et al.  Expression cloning of a reserpine-sensitive vesicular monoamine transporter. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Hirsh,et al.  Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. , 1988, Genes & development.

[35]  David Hirsh,et al.  A trans-spliced leader sequence on actin mRNA in C. elegans , 1987, Cell.

[36]  H. Schnabel,et al.  Genesis of an organ: molecular analysis of the pha-1 gene. , 1994, Development.

[37]  L. Ségalat,et al.  Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans , 1995, Science.

[38]  C M Loer,et al.  Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R. Edwards,et al.  Chimeric Vesicular Monoamine Transporters Identify Structural Domains That Influence Substrate Affinity and Sensitivity to Tetrabenazine (*) , 1996, The Journal of Biological Chemistry.

[40]  H. Horvitz,et al.  Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. , 1990, The Journal of experimental zoology.

[41]  D. Eisenberg,et al.  A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter , 1992, Cell.

[42]  T. Bonner,et al.  Functional identification of a vesicular acetylcholine transporter and its expression from a "cholinergic" gene locus. , 1994, The Journal of biological chemistry.

[43]  H. Horvitz,et al.  Serotonin and octopamine in the nematode Caenorhabditis elegans. , 1982, Science.

[44]  Fei Xu,et al.  Knockout of the Vesicular Monoamine Transporter 2 Gene Results in Neonatal Death and Supersensitivity to Cocaine and Amphetamine , 1997, Neuron.

[45]  P. Sternberg,et al.  Sensory regulation of male mating behavior in caenorhabditis elegans , 1995, Neuron.

[46]  T. Kitamoto,et al.  Structure and Organization of the DrosophilaCholinergic Locus* , 1998, The Journal of Biological Chemistry.

[47]  M. Chalfie,et al.  Organogenesis in C. elegans: Positioning of neurons and muscles in the egg-laying system , 1990, Neuron.

[48]  M Linial,et al.  Vesicular neurotransmitter transporters: from bacteria to humans. , 1995, Physiological reviews.

[49]  Elizabeth Rachel Sawin,et al.  Genetic and cellular analysis of modulated behaviors in Caenorhabditis elegans , 1996 .

[50]  J. Tam,et al.  A Novel Method for Producing Anti-peptide Antibodies , 1988 .

[51]  H. Horvitz,et al.  EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE , 1983 .

[52]  P. Fisher,et al.  Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots , 1984, The Journal of cell biology.

[53]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[54]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[55]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  Carl D. Johnson,et al.  The acetylcholinesterase genes of C. elegans: Identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype , 1988, Neuron.

[57]  J. N. Thomson,et al.  The pharynx of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  B. Moss,et al.  Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[59]  E. Pothos,et al.  Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action , 1997, Neuron.

[60]  H. Horvitz,et al.  Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. , 1989, Genetics.

[61]  D. Hall,et al.  Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans , 1991, Cell.

[62]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  J. Culotti,et al.  Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. , 1985, Developmental biology.

[64]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[65]  V. M. Pickel,et al.  Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells , 1994, The Journal of cell biology.

[66]  H. Horvitz,et al.  Genes necessary for directed axonal elongation or fasciculation in C. elegans , 1992, Neuron.

[67]  J. Sulston Post-embryonic development in the ventral cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.