Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces

A concept of locally optimal (LO) linear covering codes is introduced in accordance with the concept of minimal saturating sets in projective spaces over finite fields. An LO code is nonshortening in the sense that one cannot remove any column from a parity-check matrix without increasing the code covering radius. Several q/sup m/-concatenating constructions of LO covering codes are described. Taking a starting LO code as a "seed", such constructions produce an infinite family of LO codes with the same covering radius. The infinite families of LO codes are designed using minimal saturating sets as starting codes. New upper bounds on the length function are given. New extremal and classification problems for linear covering codes are formulated and investigated, in particular, the spectrum of possible lengths of LO codes including the greatest possible length. The complete computer classification of the minimal saturating sets in small geometries and of the corresponding LO codes is obtained.

[1]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[2]  Alexander A. Davydov,et al.  Constructions and families of covering codes and saturated sets of points in projective geometry , 1995, IEEE Trans. Inf. Theory.

[3]  Aileen Mary Mcloughlin,et al.  On the covering radius. , 1977 .

[4]  Gérard D. Cohen,et al.  Zero-error capacities and very different sequences , 1990 .

[5]  Gábor Simonyi On Witsenhausen's zero-error rate for multiple sources , 2003, IEEE Trans. Inf. Theory.

[6]  Stefano Marcugini,et al.  Minimal 1-saturating sets and complete caps in binary projective spaces , 2006, J. Comb. Theory, Ser. A.

[7]  Gilles Zémor An Extremal Problem Related to the Covering Radius of Binary Codes , 1991, Algebraic Coding.

[8]  Stefano Marcugini,et al.  Computer search in projective planes for the sizes of complete arcs , 2005 .

[9]  Stefano Marcugini,et al.  Complete caps in projective spaces PG (n, q) , 2004 .

[10]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[11]  Patric R. J. Östergård,et al.  On Saturating Sets in Small Projective Geometries , 2000, Eur. J. Comb..

[12]  Luisa Gargano,et al.  Capacities: From Information Theory to Extremal Set Theory , 1994, J. Comb. Theory, Ser. A.

[13]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[14]  I. Csiszár,et al.  On the capacity of the arbitrarily varying channel for maximum probability of error , 1981 .

[15]  Patric R. J. Östergård Classifying Subspaces of Hamming Spaces , 2002, Des. Codes Cryptogr..

[16]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[17]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[18]  Emanuela Ughi,et al.  Saturated Configurations of Points in Projective Galois Spaces , 1987, Eur. J. Comb..

[19]  Stefano Marcugini,et al.  Minimal 1-saturating sets in PG(2, q), q≤16 , 2003, Australas. J Comb..

[20]  Alexander A. Davydov,et al.  Constructions and families of nonbinary linear codes with covering radius 2 , 1999, IEEE Trans. Inf. Theory.

[21]  Stefano Marcugini,et al.  On saturating sets in projective spaces , 2003, J. Comb. Theory, Ser. A.

[22]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[23]  J. Wolfowitz Simultaneous channels , 1959 .

[24]  Stefano Marcugini,et al.  Linear codes with covering radius 2, 3 and saturating sets in projective geometry , 2004, IEEE Transactions on Information Theory.

[25]  Rita Capodaglio Di Cocco On Thick (Q+2)-Sets , 1986 .

[26]  Luisa Gargano,et al.  Qualitative Independence and Sperner Problems for Directed Graphs , 1992, J. Comb. Theory, Ser. A.

[27]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces : update 2001 , 2001 .

[28]  Imre Csiszár,et al.  Channel capacity for a given decoding metric , 1995, IEEE Trans. Inf. Theory.