Dynamics of vibrational energy excitation and dissociation in oxygen from direct molecular simulation

[1]  T. Schwartzentruber,et al.  Direct Molecular Simulation of Nonequilibrium Dilute Gases , 2017, Journal of Thermophysics and Heat Transfer.

[2]  Ross S. Chaudhry,et al.  Quasiclassical trajectory analysis of oxygen dissociation via O2,O, and N2 , 2018 .

[3]  R. Jaffe,et al.  Dissociation and Internal Excitation of Molecular Nitrogen Due to N + N2 Collisions Using Direct Molecular Simulation , 2017 .

[4]  T. Schwartzentruber,et al.  Internal energy relaxation and dissociation of molecular oxygen using direct molecular simulation , 2017 .

[5]  K. Stephani,et al.  State-to-State Vibrational Energy Modeling in DSMC using Quasiclassical Trajectory Calculations for O + O2 , 2016 .

[6]  I. Boyd,et al.  Rovibrational energy transfer and dissociation in O2-O collisions. , 2016, The Journal of chemical physics.

[7]  G. Candler,et al.  Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface , 2015 .

[8]  Alina A. Alexeenko,et al.  Effect of O2 + O ab initio and Morse additive pairwise potentials on dissociation and relaxation rates for nonequilibrium flow calculations , 2015 .

[9]  T. Schwartzentruber,et al.  Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study , 2014 .

[10]  Paolo Valentini,et al.  GPU-accelerated Classical Trajectory Calculation Direct Simulation Monte Carlo applied to shock waves , 2013, J. Comput. Phys..

[11]  Y. Tunik,et al.  Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10,800 K. , 2013, The Journal of chemical physics.

[12]  Marco Panesi,et al.  Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. , 2013, The Journal of chemical physics.

[13]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[14]  Toru Shiozaki,et al.  Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. , 2011, The Journal of chemical physics.

[15]  D. Truhlar,et al.  Erratum to "Efficient Diffuse Basis Sets: cc-pVxZ+ and maug-cc-pVxZ". [J. Chem. Theory Comput. 5, 1197-1202 (2009)]. , 2009 .

[16]  Hannah R. Leverentz,et al.  Efficient Diffuse Basis Sets: cc-pVxZ+ and maug-cc-pVxZ. , 2009, Journal of chemical theory and computation.

[17]  Donald G Truhlar,et al.  Modeling the kinetics of bimolecular reactions. , 2006, Chemical reviews.

[18]  F. Esposito,et al.  Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v)→3O , 2002 .

[19]  Katsuhisa Koura,et al.  Monte Carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations , 1998 .

[20]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[21]  Katsuhisa Koura,et al.  4 Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave , 1997 .

[22]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[23]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[24]  Hiroaki Matsumoto,et al.  Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential , 1991 .

[25]  Hans-Joachim Werner,et al.  A comparison of variational and non-variational internally contracted multiconfiguration-reference configuration interaction calculations , 1990 .

[26]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[27]  António J. C. Varandas,et al.  A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3 from a multiproperty fit to ab initio calculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data , 1988 .

[28]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[29]  S. Raynor,et al.  Ab initio study of H2 dissociation and vibrational relaxation in mixtures of He and Ar: Implications for the linear mixture rule , 1987 .

[30]  R. Jaffe The calculation of high-temperature equilibrium and nonequilibrium specific heat data for N2, O2 and NO , 1987 .

[31]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[32]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[33]  C. Lim,et al.  Study of mixture effects in the nonequilibrium kinetics of homonuclear diatomic dissociation and recombination , 1984 .

[34]  C. Lim,et al.  Nonequilibrium effects in chemical kinetics. Straight-line paths for homonuclear diatomic dissociation-recombination process , 1983 .

[35]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[36]  D. Truhlar,et al.  Test of the linear sum rule for vibrational energy transfer by trajectory calculations , 1982 .

[37]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[38]  Klaus Ruedenberg,et al.  MCSCF optimization through combined use of natural orbitals and the brillouin–levy–berthier theorem , 1979 .

[39]  Donald G. Truhlar,et al.  Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods , 1979 .

[40]  Bowen Liu,et al.  Abinitio configuration interaction study of the valence states of O2 , 1977 .

[41]  Robert J. Buenker,et al.  Theoretical investigation of the cyclic conformer of ozone , 1974 .

[42]  O. Shatalov Molecular dissociation of oxygen in the absence of vibrational equilibrium , 1973 .

[43]  Juergen Hinze,et al.  LiH Potential Curves and Wavefunctions for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π , 1972 .

[44]  Donald L. Thompson,et al.  On a Classical Trajectory Study of Energy Transfer in Some Atom-Diatomic Molecule Systems , 1972 .

[45]  R. W. Lutz,et al.  The effect of oxygen atoms on the vibrational relaxation of oxygen , 1967 .

[46]  S. Bauer,et al.  MECHANISMS FOR VIBRATIONAL RELAXATION AT HIGH TEMPERATURES , 1963 .