A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array

Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ∼20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

[1]  Australia.,et al.  A search for long-time-scale, low-frequency radio transients , 2016, 1611.08354.

[2]  S. J. Tingay,et al.  The 154 MHz radio sky observed by the Murchison Widefield Array: noise, confusion and first source count analyses , 2016, 1604.03751.

[3]  D. Frail,et al.  EXPLORING THE TRANSIENT RADIO SKY WITH VLITE: EARLY RESULTS , 2016, 1604.00667.

[4]  S. J. Tingay,et al.  Limits on Fast Radio Bursts and other transient sources at 182 MHz using the Murchison Widefield Array , 2016, 1602.07544.

[5]  D. Kaplan,et al.  BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE , 2016, 1602.05249.

[6]  J. Anderson,et al.  LOFAR MSSS: Detection of a low-frequency radio transient in 400 h of monitoring of the North Celestial Pole , 2015, 1512.00014.

[7]  A. J. van der Horst,et al.  New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR. , 2014, Monthly notices of the Royal Astronomical Society.

[8]  Peter K. G. Williams,et al.  EXTRAGALACTIC SYNCHROTRON TRANSIENTS IN THE ERA OF WIDE-FIELD RADIO SURVEYS. I. DETECTION RATES AND LIGHT CURVE CHARACTERISTICS , 2015 .

[9]  S. J. Tingay,et al.  Measuring phased‐array antenna beampatterns with high dynamic range for the Murchison Widefield Array using 137 MHz ORBCOMM satellites , 2015, 1505.07114.

[10]  Cathryn M. Trott,et al.  Real‐time imaging of density ducts between the plasmasphere and ionosphere , 2015, 1504.06470.

[11]  S. J. Tingay,et al.  The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.

[12]  E. Lenc,et al.  Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry , 2014, 1412.4466.

[13]  A. Rowlinson,et al.  LOFAR Observations of Swift J1644+57 and Implications for Short-Duration Transients , 2014, 1412.3986.

[14]  Roger Cappallo,et al.  The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees , 2014, Publications of the Astronomical Society of Australia.

[15]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[16]  A. R. Whitney,et al.  A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz , 2013, 1311.2989.

[17]  Christopher L. Williams,et al.  A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.

[18]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[19]  S. Burke-Spolaor,et al.  A Population of Fast Radio Bursts at Cosmological Distances , 2013, Science.

[20]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[21]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[22]  S. D. Hyman,et al.  DISCOVERY OF A METER-WAVELENGTH RADIO TRANSIENT IN THE SWIRE DEEP FIELD: 1046+59 , 2012, 1201.6290.

[23]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[24]  C. Pankow,et al.  Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background. , 2012, 1201.2959.

[25]  E. O. Ofek,et al.  A REVISED VIEW OF THE TRANSIENT RADIO SKY , 2011, 1111.0007.

[26]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[27]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[28]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[29]  Baltimore,et al.  VARIABLE AND TRANSIENT RADIO SOURCES IN THE FIRST SURVEY , 2011, 1107.5901.

[30]  Cathryn M. Trott,et al.  SOURCE DETECTION IN INTERFEROMETRIC VISIBILITY DATA. I. FUNDAMENTAL ESTIMATION LIMITS , 2011, 1102.3746.

[31]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[32]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[33]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[34]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[35]  T. Joseph W. Lazio,et al.  GCRT J1742-3001: A NEW RADIO TRANSIENT TOWARD THE GALACTIC CENTER , 2008, 0811.1972.

[36]  Alexei V. Filippenko,et al.  Submillijansky Transients in Archival Radio Observations , 2007, 0705.3158.

[37]  J. G. Doyle,et al.  Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf , 2007, 0705.2054.

[38]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[39]  S. D. Hyman,et al.  A powerful bursting radio source towards the Galactic Centre , 2005, Nature.

[40]  N. Gehrels,et al.  An expanding radio nebula produced by a giant flare from the magnetar SGR 1806–20 , 2005, Nature.

[41]  NasaGsfc,et al.  The Radiometric Bode’s Law and Extrasolar Planets , 2004, astro-ph/0405343.

[42]  P. Brady,et al.  Upper limits on gravitational-wave signals based on loudest events , 2004, gr-qc/0405044.

[43]  E. Ofek,et al.  Orphan Gamma-Ray Burst Radio Afterglows: Candidates and Constraints on Beaming , 2002, astro-ph/0203262.

[44]  D. Frail,et al.  The radio afterglow from the γ-ray burst of 8 May 1997 , 1997, Nature.

[45]  K. Johnston,et al.  Extreme scattering events caused by compact structures in the interstellar medium , 1987, Nature.

[46]  P. Dierckx An algorithm for surface-fitting with spline functions , 1981 .

[47]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[48]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .