Sub-Poisson-binomial light

We introduce a general parameter ${Q}_{\mathrm{PB}}$ that provides an experimentally accessible nonclassicality measure for light. The parameter is quantified by the click statistics obtained from on-off detectors in a general multiplexing detection setup. Sub-Poisson-binomial statistics, observed by ${Q}_{\mathrm{PB}}l0$, indicates that a given state of light is nonclassical. Our parameter replaces the binomial parameter ${Q}_{\mathrm{B}}$ for more general cases, where any unbalance among the multiplexed modes is allowed, thus enabling the use of arbitrary multiplexing schemes. The significance of the parameter ${Q}_{\mathrm{PB}}$ is theoretically examined in a measurement setup that only consists of a ring resonator and a single on-off detector. The proposed setup exploits minimal experimental resources and is geared towards a fully integrated quantum nanophotonic circuit. The results show that nonclassical features remain noticeable even in the presence of significant losses, rendering our nonclassicality test more practical and sufficiently flexible to be used in various nanophotonic platforms.

[1]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[2]  Marco Genovese,et al.  Quantum characterization of superconducting photon counters , 2011, 1103.2991.

[3]  Marco Barbieri,et al.  Direct observation of sub-binomial light , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[4]  Jan Sperling,et al.  Nonclassicality phase-space functions: more insight with fewer detectors. , 2014, Physical review letters.

[5]  J. Peřina,et al.  Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera , 2012, 1202.1437.

[6]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[7]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[8]  J. D. Franson,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[9]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[10]  G. Agarwal,et al.  Correlation measurements with on-off detectors , 2013, 1309.3058.

[11]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[12]  G. S. Agarwal,et al.  Quantum state engineering by click counting , 2014, 1403.1044.

[13]  T. Ralph,et al.  Photon number projection using non-number-resolving detectors , 2007 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  CH' , 2018, Dictionary of Upriver Halkomelem.

[16]  R. Bashir,et al.  On a Chip , 2011, IEEE Pulse.

[17]  G. Agarwal,et al.  Sub-binomial light. , 2012, Physical review letters.

[18]  B. J. Metcalf,et al.  On-chip, photon-number-resolving, telecom-band detectors for scalable photonic information processing , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[19]  Jan Perina,et al.  State reconstruction of a multimode twin beam using photodetection , 2013, 1302.0156.

[20]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[21]  Werner Vogel,et al.  Harnessing click detectors for the genuine characterization of light states , 2016, Scientific Reports.

[22]  W. Marsden I and J , 2012 .

[23]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[24]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[25]  Agarwal,et al.  Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  G. S. Agarwal,et al.  True photocounting statistics of multiple on-off detectors , 2012, 1202.5106.

[27]  J. Sperling,et al.  Homodyne detection with on-off detector systems , 2015, 1508.03142.

[28]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[29]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[30]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[31]  C. Silberhorn,et al.  Uncovering Quantum Correlations with Time-Multiplexed Click Detection. , 2015, Physical review letters.

[32]  Yuta Takahashi,et al.  Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength , 2010 .

[33]  S. M. Samuels On the Number of Successes in Independent Trials , 1965 .

[34]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[35]  Konrad Banaszek,et al.  Photon counting with a loop detector. , 2003, Optics letters.

[36]  J. Rehacek,et al.  Multiple-photon resolving fiber-loop detector , 2003 .