A Data-Dependent Weighted LASSO Under Poisson Noise

Sparse linear inverse problems appear in a variety of settings, but often the noise contaminating observations cannot accurately be described as bounded by or arising from a Gaussian distribution. Poisson observations in particular are a characteristic feature of several real-world applications. Previous work on sparse Poisson inverse problems encountered several limiting technical hurdles. This paper describes a novel alternative analysis approach for sparse Poisson inverse problems that 1) sidesteps the technical challenges present in previous work, 2) admits estimators that can readily be computed using off-the-shelf LASSO algorithms, and 3) hints at a general framework for broad classes of noise in sparse linear inverse problems. At the heart of this new approach lies a weighted LASSO estimator for which data-dependent weights are based on Poisson concentration inequalities. Unlike previous analyses of the weighted LASSO, the proposed analysis depends on conditions which can be checked or shown to hold in general settings with high probability. 2000 Math Subject Classification: 60E15, 62G05, 62G08, and 94A12.

[1]  R. Tibshirani,et al.  "Preconditioning" for feature selection and regression in high-dimensional problems , 2007, math/0703858.

[2]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .

[3]  P. Reynaud-Bouret,et al.  Near optimal thresholding estimation of a Poisson intensity on the real line , 2008, 0810.5204.

[4]  Christine Tuleau-Malot,et al.  A model of Poissonian interactions and detection of dependence , 2015, Stat. Comput..

[5]  Robert D. Nowak,et al.  Socioscope: Spatio-Temporal Signal Recovery from Social Media (Extended Abstract) , 2012, IJCAI.

[6]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[7]  Nebojsa Jojic,et al.  A Comparative Framework for Preconditioned Lasso Algorithms , 2013, NIPS.

[8]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[9]  Laurent Cavalier,et al.  Inverse Problems in Statistics , 2011 .

[10]  Rebecca Willett,et al.  Compressive coded aperture superresolution image reconstruction , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  A. Tsybakov,et al.  Aggregation for Gaussian regression , 2007, 0710.3654.

[12]  Roummel F. Marcia,et al.  Spatio-temporal Compressed Sensing with Coded Apertures and Keyed Exposures , 2011, 1111.7247.

[13]  Ole Winther,et al.  Multivariate Hawkes process models of the occurrence of regulatory elements , 2010, BMC Bioinformatics.

[14]  Franck Picard,et al.  Adaptive Lasso and group-Lasso for functional Poisson regression , 2014, J. Mach. Learn. Res..

[15]  Xin Jiang,et al.  Minimax Optimal Rates for Poisson Inverse Problems With Physical Constraints , 2014, IEEE Transactions on Information Theory.

[16]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[17]  Nebojsa Jojic,et al.  Variable Selection through Correlation Sifting , 2011, RECOMB.

[18]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[19]  Lasso and probabilistic inequalities for multivariate point processes , 2015, 1208.0570.

[20]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[21]  Arkadi Nemirovski,et al.  Accuracy Guarantees for ℓ1-Recovery , 2010, IEEE Trans. Inf. Theory.

[22]  Jeffrey A. Fessler,et al.  Sparsity regularization for image reconstruction with Poisson data , 2009, Electronic Imaging.

[23]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[24]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[25]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[26]  Yuan Li,et al.  Minimax Optimal Convex Methods for Poisson Inverse Problems Under $\ell_{q}$ -Ball Sparsity , 2016, IEEE Transactions on Information Theory.

[27]  I. Rish,et al.  Sparse signal recovery with exponential-family noise , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[28]  Robert D. Nowak,et al.  Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging , 2003, IEEE Transactions on Medical Imaging.

[29]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[30]  K. Krishnamurthy,et al.  SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3 , 2013, 1305.7399.

[31]  Venkatesh Saligrama,et al.  Minimax Optimal Sparse Signal Recovery With Poisson Statistics , 2015, IEEE Transactions on Signal Processing.

[32]  Sophie Schbath,et al.  FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model , 2005, Statistical applications in genetics and molecular biology.

[33]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[34]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[35]  Jean-Luc Starck,et al.  Astronomical Data Analysis and Sparsity: From Wavelets to Compressed Sensing , 2009, Proceedings of the IEEE.

[36]  Florentina Bunea,et al.  Consistent selection via the Lasso for high dimensional approximating regression models , 2008, 0805.3224.

[37]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[38]  Martin J. Wainwright,et al.  Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..

[39]  S. Geer,et al.  The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso) , 2011 .

[40]  P. Reynaud-Bouret,et al.  Adaptive density estimation: a curse of support? ✩ , 2009, 0907.1794.

[41]  Andrea Montanari,et al.  Counter braids: a novel counter architecture for per-flow measurement , 2008, SIGMETRICS '08.

[42]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[43]  Cun-Hui Zhang,et al.  Adaptive Lasso for sparse high-dimensional regression models , 2008 .

[44]  J. Zinn,et al.  Exponential and Moment Inequalities for U-Statistics , 2000, math/0003228.

[45]  Taly Gilat Schmidt,et al.  Optimal "image-based" weighting for energy-resolved CT. , 2009, Medical physics.

[46]  S. Geer HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.

[47]  E.,et al.  Adaptive Dantzig density estimation , 2009 .

[48]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[49]  Laure Sansonnet,et al.  Wavelet Thresholding Estimation in a Poissonian Interactions Model with Application to Genomic Data , 2011, 1107.4219.

[50]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[51]  A. Robert Calderbank,et al.  Performance Bounds for Expander-Based Compressed Sensing in Poisson Noise , 2010, IEEE Transactions on Signal Processing.

[52]  Karim Lounici Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators , 2008, 0801.4610.

[53]  D. Osgood Poisson-Based Regression Analysis of Aggregate Crime Rates , 2000 .

[54]  Sophie Lambert-Lacroix,et al.  On minimax density estimation on R , 2001 .

[55]  P. Reynaud-Bouret,et al.  Exponential Inequalities, with Constants, for U-statistics of Order Two , 2003 .

[56]  George Varghese,et al.  New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice , 2003, TOCS.

[57]  David A. Green,et al.  X-RAY SPECTRAL VARIATIONS IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3 , 2009, 0903.1870.

[58]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[59]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[60]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[61]  秀俊 松井,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2014 .