Hybrid metaheuristic for multi-objective biclustering in microarray data

Biclustering is a well-known data mining problem in the field of gene expression data. It consists in extracting genes that behave similarly under some experimental conditions. As the Biclustering problem is NP-Complete in most of its variants, many heuristics and metaheuristics are defined to solve for it. Classical algorithms allow the extraction of some biclusters in reasonable time, however most of them remain time consuming. In this work, we propose a new hybrid multi-objective meta-heuristic H-MOBI based on NSGA-II (Non-dominated Sorting Genetic Algorithm II), CC (Cheng and Church) heuristic and a multi-objective local search PLS-1 (Pareto Local Search 1). Experimental results on real data sets show that our approach can find significant biclusters of high quality.

[1]  Achuthsankar S. Nair,et al.  Biclustering of gene expression data using reactive greedy randomized adaptive search procedure , 2009, BMC Bioinformatics.

[2]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[3]  Federico Divina,et al.  Improved biclustering on expression data through overlapping control , 2009, Int. J. Intell. Comput. Cybern..

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  S. Amirhassan Monadjemi,et al.  A New Biclustering Method for Gene Expersion Data Based on Adaptive Multi Objective Particle Swarm Optimization , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[6]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[7]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[8]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[9]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[10]  Sushmita Mitra,et al.  Multi-objective evolutionary biclustering of gene expression data , 2006, Pattern Recognit..

[11]  Aidong Zhang,et al.  Interrelated two-way clustering: an unsupervised approach for gene expression data analysis , 2001, Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001).

[12]  Federico Divina,et al.  Biclustering of expression data with evolutionary computation , 2006, IEEE Transactions on Knowledge and Data Engineering.

[13]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Zhoujun Li,et al.  Multi-objective Particle Swarm Optimization Biclustering of Microarray Data , 2008, 2008 IEEE International Conference on Bioinformatics and Biomedicine.

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  El-Ghazali Talbi,et al.  Multi-objective evolutionary algorithm for biclustering in microarrays data , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[17]  Padraig Cunningham,et al.  Application of Simulated Annealing to the Biclustering of Gene Expression Data , 2006, IEEE Transactions on Information Technology in Biomedicine.

[18]  Thomas Stützle,et al.  A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices , 2006, Eur. J. Oper. Res..

[19]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  Zhoujun Li,et al.  Biclustering of microarray data with MOSPO based on crowding distance , 2009, BMC Bioinformatics.

[21]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[22]  El-Ghazali Talbi,et al.  A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO , 2011, Eur. J. Oper. Res..

[23]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[24]  Liang Gao-ya,et al.  Multi Objective Particle Swarm Optimization , 2017 .

[25]  Zhoujun Li,et al.  Multi-objective ant colony optimization biclustering of microarray data , 2009, 2009 IEEE International Conference on Granular Computing.

[26]  Wolfram Koepf,et al.  Lecture Notes in Computer Science (LNCS) , 2011 .

[27]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.