The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans.

[1]  T. Hartmann,et al.  Amyloid beta as a regulator of lipid homeostasis. , 2007, Trends in molecular medicine.

[2]  S. Ferreira,et al.  Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts , 2007, Progress in Neurobiology.

[3]  R. Plasterk,et al.  APL-1, a Caenorhabditis elegans protein related to the human β-amyloid precursor protein, is essential for viability , 2007, Proceedings of the National Academy of Sciences.

[4]  Gary Ruvkun,et al.  The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25 , 2006, Development.

[5]  M. Goedert,et al.  A Century of Alzheimer's Disease , 2006, Science.

[6]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[7]  F. Slack,et al.  A Developmental Timing MicroRNA and Its Target Regulate Life Span in C. elegans , 2005, Science.

[8]  F. Slack,et al.  Post‐embryonic expression of C. elegans microRNAs belonging to the lin‐4 and let‐7 families in the hypodermis and the reproductive system , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[10]  A. Rougvie,et al.  Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues , 2005, Development.

[11]  Gary Ruvkun,et al.  Functional Genomic Analysis of C. elegans Molting , 2005, PLoS biology.

[12]  Mark Gerstein,et al.  The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. , 2005, Developmental cell.

[13]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[14]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[15]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[16]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[17]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[18]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[19]  T. Russo,et al.  feh-1 and apl-1, the Caenorhabditis elegans orthologues of mammalian Fe65 and beta-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping. , 2002, Journal of cell science.

[20]  F. Slack,et al.  Control of developmental timing by small temporal RNAs: a paradigm for RNA‐mediated regulation of gene expression , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  G. Kirfel,et al.  The biological role of the Alzheimer amyloid precursor protein in epithelial cells , 2002, Histochemistry and Cell Biology.

[22]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[23]  V. Ambros,et al.  Control of developmental timing in Caenorhabditis elegans. , 2000, Current opinion in genetics & development.

[24]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[25]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[26]  A. Fire,et al.  Specific interference by ingested dsRNA , 1998, Nature.

[27]  A. Rougvie,et al.  Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene. , 1998, Genetics.

[28]  V Praitis,et al.  sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis. , 1998, Development.

[29]  Iva Greenwald,et al.  Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene , 1995, Nature.

[30]  A. Rougvie,et al.  The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. , 1995, Development.

[31]  C. Li,et al.  apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Barry,et al.  Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy‐7. , 1992, The EMBO journal.

[33]  H. Horvitz,et al.  Heterochronic mutants of the nematode Caenorhabditis elegans. , 1984, Science.

[34]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[35]  D. Campion,et al.  APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy , 2006, Nature Genetics.

[36]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .