Remeshing for metal forming simulations—Part I: Two‐dimensional quadrilateral remeshing

In this paper, a general framework of practical two-dimensional quadrilateral remeshing, which includes the determination of remeshing time, automatic quadrilateral mesh generation, and data transfer process, will be formulated. In particular, the current work contains new algorithms of mesh density specification according to the distribution of effective strain-rate gradients, mesh density smoothing by fast Fourier transform (FFT) and low-pass filtering techniques, coarsening it by node placement scheme, and a modified Laplacian mesh smoothing technique. The efficiency of the developed remeshing scheme was tested through three practical two-dimensional metal forming simulations. The results clearly indicate that the algorithms proposed in this study make it possible to simulate two-dimensional metal forming problems efficiently and automatically. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[2]  Roland W. Lewis,et al.  Adaptive finite element remeshing in a large deformation analysis of metal powder forming , 1999 .

[3]  G. D. Bergland,et al.  A guided tour of the fast Fourier transform , 1969, IEEE Spectrum.

[4]  R. Hill The mathematical theory of plasticity , 1950 .

[5]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[6]  R. T. McLay,et al.  Automatic Remeshing Scheme for Modeling Hot Forming Process , 1986 .

[7]  Man-Soo Joun,et al.  Quadrilateral finite-element generation and mesh quality control for metal forming simulation , 1997 .

[8]  O. C. Zienkiewicz,et al.  Adaptive FEM computation of forming processes—Application to porous and non‐porous materials , 1990 .

[9]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[10]  Lionel Fourment,et al.  Error estimators for viscoplastic materials: application to forming processes , 1995 .

[11]  E. O. Brigham,et al.  The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  P. Hansbo Generalized Laplacian smoothing of unstructured grids , 1995 .

[13]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[14]  Soo-Ik Oh,et al.  A new method to design blockers , 1994 .

[15]  S. Canann,et al.  Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .

[16]  Karl Schweizerhof,et al.  COMBINATION OF ADAPTIVITY AND MESH SMOOTHING FOR THE FINITE ELEMENT ANALYSIS OF SHELLS WITH INTERSECTIONS , 1997 .

[17]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[18]  Paulo A.F. Martins,et al.  FINITE ELEMENT REMESHING: A METAL FORMING APPROACH FOR QUADRILATERAL MESH GENERATION AND REFINEMENT , 1997 .

[19]  B. Choi Surface Modeling for Cad/Cam , 1991 .

[20]  Serge Cescotto,et al.  An automatic remeshing technique for finite element simulation of forming processes , 1990 .

[21]  Noboru Kikuchi,et al.  A mesh re-zoning technique for finite element simulations of metal forming processes , 1986 .

[22]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[23]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in flow formulation for forming problems , 1988 .

[24]  Jeffrey A. Talbert,et al.  Development of an automatic, two‐dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition , 1990 .

[25]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[26]  Shiro Kobayashi,et al.  Metal forming and the finite-element method , 1989 .

[27]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[28]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[29]  William H. Press,et al.  Numerical recipes in C , 2002 .