Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry.

We report on dual-gate reflectometry in a metal-oxide-semiconductor double-gate silicon transistor operating at low temperature as a double quantum dot device. The reflectometry setup consists of two radio frequency resonators respectively connected to the two gate electrodes. By simultaneously measuring their dispersive responses, we obtain the complete charge stability diagram of the device. Electron transitions between the two quantum dots and between each quantum dot and either the source or the drain contact are detected through phase shifts in the reflected radio frequency signals. At finite bias, reflectometry allows probing charge transitions to excited quantum-dot states, thereby enabling direct access to the energy level spectra of the quantum dots. Interestingly, we find that in the presence of electron transport across the two dots the reflectometry signatures of interdot transitions display a dip-peak structure containing quantitative information on the charge relaxation rates in the double quantum dot.

[1]  T Duty,et al.  Observation of quantum capacitance in the Cooper-pair transistor. , 2005, Physical review letters.

[2]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[3]  X Jehl,et al.  Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. , 2013, Physical review letters.

[4]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[5]  D. A. Ritchie,et al.  Single shot charge detection using a radio-frequency quantum point contact , 2007, 0907.1010.

[6]  Maud Vinet,et al.  Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry , 2014 .

[7]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[8]  V. Maisi,et al.  Microwave Emission from Hybridized States in a Semiconductor Charge Qubit. , 2015, Physical review letters.

[9]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[10]  Dual-Port Reflectometry Technique: Charge identification in nanoscaled single-electron transistors. , 2015, IEEE Nanotechnology Magazine.

[11]  R. Schoelkopf,et al.  Noise performance of the radio-frequency single-electron transistor , 2003 .

[12]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[13]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[14]  J. R. Petta,et al.  Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.

[15]  T. Kontos,et al.  Mesoscopic admittance of a double quantum dot , 2010, 1011.0386.

[16]  Toshiaki Hayashi,et al.  Impedance analysis of a radio-frequency single-electron transistor , 2002 .

[17]  J. Splettstoesser,et al.  Readout of relaxation rates by nonadiabatic pumping spectroscopy , 2016, 1602.03029.

[18]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[19]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[20]  Franco Nori,et al.  Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor. , 2016, Nano letters.

[21]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[22]  A. Orlov,et al.  Defect detection in nano-scale transistors based on radio-frequency reflectometry , 2011, 1109.4545.

[23]  M. F. Gonzalez-Zalba,et al.  Probing the limits of gate-based charge sensing , 2015, Nature Communications.

[24]  G. Burkard,et al.  Dispersive readout of valley splittings in cavity-coupled silicon quantum dots , 2016, 1607.08801.

[25]  Zhan Shi,et al.  Coherent quantum oscillations and echo measurements of a Si charge qubit , 2013 .

[26]  T. Kontos,et al.  Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture , 2013, 1310.4363.

[27]  A. Ferguson,et al.  Impedance of the single-electron transistor at radio-frequencies , 2011, 1108.3463.

[28]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[29]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[30]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[31]  Joel R. Wendt,et al.  Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures , 2016 .

[32]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[33]  M. Fanciulli,et al.  Valley blockade and multielectron spin-valley Kondo effect in silicon , 2015, 1501.02665.

[34]  D. P. DiVincenzo,et al.  Coherent spin manipulation in an exchange-only qubit , 2010, 1005.0273.