Particle shape effects in colloidal crystals and colloidal liquid crystals: Small-angle X-ray scattering studies with microradian resolution

Small-angle X-ray scattering (SAXS) is an indispensable tool in structural investigations of self-assembled colloidal crystals and colloidal liquid crystals. This paper reviews recent studies of the particle shape effects on the crystal structure as revealed by SAXS. Rod-like, plate-like, biaxial board-like as well as cubic-like shapes are discussed. Since relatively large, (sub)micron particles are often used in these studies, we describe the principles of the microradian X-ray diffraction technique that allows detailed characterisation of the periodic order including the determination of the intrinsic width of the Bragg peaks.

[1]  Anatoly Snigirev,et al.  Microradian X-ray diffraction in colloidal photonic crystals , 2006 .

[2]  A. Petukhov,et al.  Uniaxial and biaxial liquid crystal phases in colloidal dispersions of board-like particles , 2010 .

[3]  L. Bergström,et al.  Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes , 2011, Nano letters.

[4]  A. Petukhov,et al.  Synthesis of Goethite as a Model Colloid for Mineral Liquid Crystals , 2007 .

[5]  Alfons van Blaaderen,et al.  Phase behavior of colloidal silica rods , 2012 .

[6]  A. Beale,et al.  The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. , 2010, Chemical Society reviews.

[7]  B. Borie X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .

[8]  Irving Langmuir,et al.  The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates , 1938 .

[9]  H. Zocher Über freiwillige Strukturbildung in Solen. (Eine neue Art anisotrop flüssiger Medien.) , 1925 .

[10]  F. Lerouge,et al.  Aqueous suspensions of GdPO4 nanorods: a paramagnetic mineral liquid crystal. , 2012, The journal of physical chemistry. B.

[11]  H. Lekkerkerker,et al.  Phase behaviour of lyotropic liquid crystals in external fields and confinement , 2013 .

[12]  M. Drofenik,et al.  Ferromagnetism in suspensions of magnetic platelets in liquid crystal , 2013, Nature.

[13]  Matthew N. O’Brien,et al.  Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. , 2015, Nature materials.

[14]  J. Ferré,et al.  Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods , 2002 .

[15]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[16]  M. Dijkstra,et al.  Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field. , 2014, Soft matter.

[17]  André Guinier,et al.  X-ray Crystallography. (Book Reviews: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies) , 1963 .

[18]  Anatoly Snigirev,et al.  Self-assembly of colloidal cubes via vertical deposition. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[19]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[20]  H. Lekkerkerker,et al.  High-resolution small-angle x-ray diffraction study of long-range order in hard-sphere colloidal crystals. , 2002, Physical review letters.

[21]  Dmitri I Svergun,et al.  Applications of small-angle X-ray scattering to biomacromolecular solutions. , 2013, The international journal of biochemistry & cell biology.

[22]  K. Yager,et al.  Periodic lattices of arbitrary nano‐objects: modeling and applications for self‐assembled systems , 2014 .

[23]  Alfons van Blaaderen,et al.  Materials Science: Colloids get complex , 2006, Nature.

[24]  Bruno J. Lemaire,et al.  Swollen liquid-crystalline lamellar phase based on extended solid-like sheets , 2001, Nature.

[25]  A. Petukhov,et al.  Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles. , 2009, Physical review letters.

[26]  R. Schropp,et al.  Characterization of Photonic Colloidal Single Crystals by Microradian X‐ray Diffraction , 2006 .

[27]  Nobuyoshi Miyamoto,et al.  Liquid Crystalline Inorganic Nanosheet Colloids Derived From Layered Materials , 2012 .

[28]  A. Snigirev,et al.  Self-assembly of colloidal hematite cubes: a microradian X-ray diffraction exploration of sedimentary crystals , 2013 .

[29]  P. Levitz,et al.  Liquid–crystalline aqueous clay suspensions , 2006, Proceedings of the National Academy of Sciences.

[30]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[31]  A. Rennie,et al.  Dispersions of plate-like colloidal particles--cubatic order? , 2010, Journal of colloid and interface science.

[32]  J. Gabriel,et al.  Mineral liquid crystals , 2005 .

[33]  T. Hanrath,et al.  Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. , 2012, Nano letters.

[34]  J. Ferré,et al.  Outstanding magnetic properties of nematic suspensions of goethite (alpha-FeOOH) nanorods. , 2002, Physical review letters.

[35]  J. Jolivet,et al.  Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (alpha-FeOOH) nanorods. , 2004, Physical review letters.

[36]  W. Kegel,et al.  Tuning the colloidal crystal structure of magnetic particles by external field. , 2015, Angewandte Chemie.

[37]  L. D. A. Siebbeles,et al.  Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices , 2014, Science.

[38]  Oleg Gang,et al.  Continuous phase transformation in nanocube assemblies. , 2011, Physical review letters.

[39]  A. Rennie,et al.  Phase separation and structure in a concentrated colloidal dispersion of uniform plates , 1999 .

[40]  Liang-shi Li,et al.  Semiconductor Nanorod Liquid Crystals and Their Assembly on a Substrate , 2003 .

[41]  A. Petukhov,et al.  In-plane stacking disorder in polydisperse hard sphere crystals. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[42]  J. Ferré,et al.  The complex phase behaviour of suspensions of goethite (alpha-FeOOH) nanorods in a magnetic field. , 2005, Faraday discussions.

[43]  Yoshinori Nishino,et al.  Advances in X-ray scattering: from solution SAXS to achievements with coherent beams. , 2012, Current opinion in structural biology.

[44]  H. Lekkerkerker,et al.  Lyotropic smectic B phase formed in suspensions of charged colloidal platelets. , 2012, Journal of the American Chemical Society.

[45]  A. Singer,et al.  Structural evolution of colloidal crystal films in the process of melting revealed by Bragg peak analysis. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[46]  T. Narayanan High brilliance small-angle X-ray scattering applied to soft matter , 2009 .

[47]  A. V. Vasilieva,et al.  Double stacking faults in convectively assembled crystals of colloidal spheres. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[48]  H. Lekkerkerker,et al.  Liquid crystal phase transitions in suspensions of polydisperse plate-like particles , 2000, Nature.

[49]  A. Petukhov,et al.  Influence of polydispersity on the phase behavior of colloidal goethite. , 2008, The Journal of chemical physics.

[50]  H. Lekkerkerker,et al.  Observation of a hexatic columnar liquid crystal of polydisperse colloidal disks. , 2005, Physical Review Letters.

[51]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[52]  N. Yagi,et al.  Ultra‐small‐angle X‐ray diffraction and scattering experiments using medium‐length beamlines at SPring‐8 , 2003 .

[53]  A. Dessombz,et al.  Design of liquid-crystalline aqueous suspensions of rutile nanorods: evidence of anisotropic photocatalytic properties. , 2007, Journal of the American Chemical Society.

[54]  G. R. Luckhurst,et al.  Biaxial nematic liquid crystals: theory, simulation and experiment , 2015 .

[55]  Z. X. Zhang,et al.  Isotropic-nematic phase transition of nonaqueous suspensions of natural clay rods. , 2006, The Journal of chemical physics.

[56]  G. Vroege Biaxial phases in mineral liquid crystals , 2014 .

[57]  Meyer,et al.  Orientational distribution function in nematic tobacco-mosaic-virus liquid crystals measured by x-ray diffraction. , 1988, Physical review letters.

[58]  P. Davidson Vanadium pentoxide gels: From “chimie douce” to “matière molle” , 2010 .

[59]  D. Frenkel,et al.  Phase behavior of disklike hard-core mesogens. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[60]  A. Petukhov,et al.  Onsager revisited: Magnetic field induced nematic-nematic phase separation in dispersions of goethite nanorods , 2010 .

[61]  L. Bergström,et al.  Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. , 2013, Nanoscale.

[62]  H. Lekkerkerker,et al.  Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  J. Duval,et al.  Isotropic/nematic and sol/gel transitions in aqueous suspensions of size selected nontronite NAu 1 , 2013, Clay Minerals.

[64]  H. Lekkerkerker,et al.  Sol-gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platelets. , 2009, The journal of physical chemistry. B.

[65]  H. H. Wensink,et al.  Influence of a magnetic field on the nematic phase of hard colloidal platelets. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  N. Stribeck X-Ray Scattering of Soft Matter , 2007 .

[67]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[68]  A. Petukhov,et al.  Smectic Liquid‐Crystalline Order in Suspensions of Highly Polydisperse Goethite Nanorods , 2006 .

[69]  Y. K. Levine,et al.  The Dutch-Belgian beamline at the ESRF. , 1998, Journal of synchrotron radiation.

[70]  J. Ferré,et al.  The complex phase behaviour of suspensions of goethite (alpha-FeOOH) nanorods in a magnetic field. , 2005, Faraday discussions.

[71]  I. Robinson Elements of Modern X-ray Physics , 2002 .