Machine Learning Macroeconometrics: A Primer

This Chapter reviews econometric methods that can be used in order to deal with the challenges of inference in high-dimensional empirical macro models with possibly “more parameters than observations�?. These methods broadly include machine learning algorithms for Big Data, but also more traditional estimation algorithms for data with a short span of observations relative to the number of explanatory variables. While building mainly on a univariate linear regression setting, I show how machine learning ideas can be generalized to classes of models that are interesting to applied macroeconomists, such as time-varying parameter models and vector autoregressions.

[1]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[2]  Dimitris Korobilis,et al.  Prior Selection for Panel Vector Autoregressions , 2015, Comput. Stat. Data Anal..

[3]  Kshitij Khare,et al.  High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models , 2018, Journal of the American Statistical Association.

[4]  Allan Timmermann,et al.  Complete subset regressions , 2013 .

[5]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[6]  Catherine Doz,et al.  A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models , 2006, Review of Economics and Statistics.

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  Edward C. Prescott,et al.  Estimation in the Presence of Stochastic Parameter Variation , 1976 .

[9]  David B. Dunson,et al.  Bayesian Compressed Regression , 2013, ArXiv.

[10]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[11]  David M. Blei,et al.  Frequentist Consistency of Variational Bayes , 2017, Journal of the American Statistical Association.

[12]  G. Casella,et al.  Penalized regression, standard errors, and Bayesian lassos , 2010 .

[13]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[14]  Doron Avramov,et al.  Stock Return Predictability and Model Uncertainty , 2001 .

[15]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[16]  Mark W. Watson,et al.  Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics , 2016 .

[17]  Nicholas G. Polson,et al.  Default Bayesian Analysis with Global-Local Shrinkage Priors , 2015, 1510.03516.

[18]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[19]  Edward E. Leamer,et al.  Let's Take the Con Out of Econometrics , 1983 .

[20]  R. Mariano,et al.  A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series , 2002 .

[21]  Serena Ng,et al.  Are More Data Always Better for Factor Analysis? , 2003 .

[22]  J. Durham Sensitivity analyses of anomalies in developed stock markets , 2001 .

[23]  Shaun P. Vahey,et al.  Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty , 2009 .

[24]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast? , 2006 .

[25]  R. Frisch,et al.  Partial Time Regressions as Compared with Individual Trends , 1933 .

[26]  G. Koop,et al.  Forecasting In ation Using Dynamic Model Averaging , 2009 .

[27]  Sendhil Mullainathan,et al.  Machine Learning: An Applied Econometric Approach , 2017, Journal of Economic Perspectives.

[28]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[29]  Chris Papageorgiou,et al.  Rough and lonely road to prosperity: a reexamination of the sources of growth in Africa using Bayesian model averaging , 2008 .

[30]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[31]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[32]  Michael McAleer,et al.  What Will Take the Con out of Econometrics , 1985 .

[33]  Jonathan H. Wright,et al.  Bayesian Model Averaging and Exchange Rate Forecasts , 2003 .

[34]  J. Stock,et al.  A dynamic factor model framework for forecast combination , 1999 .

[35]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[36]  Jonathan H. Wright,et al.  Forecasting Inflation , 2011 .

[37]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .

[38]  Arnold Zellner,et al.  Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates , 1993 .

[39]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[40]  Todd E. Clark,et al.  Large Vector Autoregressions with Stochastic Volatility and Flexible Priors , 2016 .

[41]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[42]  Jerry A. Hausman,et al.  Specification and estimation of simultaneous equation models , 1983 .

[43]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[44]  Richard G. Baraniuk,et al.  Consistent Parameter Estimation for LASSO and Approximate Message Passing , 2015, The Annals of Statistics.

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[46]  Rémi Munos,et al.  Linear regression with random projections , 2012, J. Mach. Learn. Res..

[47]  Sergio Nicoletti Altimari,et al.  Does money lead inflation in the euro area , 2001 .

[48]  S. Mukherjee,et al.  Partial Factor Modeling: Predictor-Dependent Shrinkage for Linear Regression , 2013 .

[49]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[50]  X. Sala-i-Martin,et al.  I Just Ran Two Million Regressions , 1997 .

[51]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[52]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[53]  Enrique Moral-Benito Determinants of Economic Growth: A Bayesian Panel Data Approach , 2009 .

[54]  V. Johnson,et al.  Bayesian Model Selection in High-Dimensional Settings , 2012, Journal of the American Statistical Association.

[55]  J. Bai,et al.  Large Dimensional Factor Analysis , 2008 .

[56]  R. Tibshirani,et al.  Model Search by Bootstrap “Bumping” , 1999 .

[57]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[58]  Huigang Chen,et al.  Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods , 2009, SSRN Electronic Journal.

[59]  G. Ricco,et al.  Government Purchases Reloaded: Informational Insufficiency and Heterogeneity in Fiscal VARs , 2017 .

[60]  Harald Uhlig,et al.  Reasonable extreme bounds analysis , 1990 .

[61]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[62]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[63]  D. Peña,et al.  Forecasting with nonstationary dynamic factor models , 2004 .

[64]  Davide Pettenuzzo,et al.  Forecasting Macroeconomic Variables Under Model Instability , 2016 .

[65]  Michele Lenza,et al.  Prior Selection for Vector Autoregressions , 2012, Review of Economics and Statistics.

[66]  C. Granger Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models? , 2008 .

[67]  M. Geisel Bayesian Comparisons of Simple Macroeconomic Models , 1973 .

[68]  Luca Gambetti,et al.  Sufficient information in structural VARs , 2014 .

[69]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[70]  David F. Hendry,et al.  The Properties of Automatic Gets Modelling , 2004 .

[71]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[72]  C. Christ,et al.  The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955 , 1994 .

[73]  Bryan T. Kelly,et al.  The Three-Pass Regression Filter: A New Approach to Forecasting Using Many Predictors , 2014 .

[74]  Robert B. Litterman Techniques of forecasting using vector autoregressions , 1979 .

[75]  Chang‐Jin Kim,et al.  State-Space Models with Regime-Switching: Classical and Gibbs Sampling Approaches with Applications , 1999 .

[76]  K. J. Martijn Cremers,et al.  Stock Return Predictability: A Bayesian Model Selection Perspective , 2000 .

[77]  R. Levine,et al.  A Sensitivity Analysis of Cross-Country Growth Regressions , 1991 .

[78]  A. Raftery,et al.  Default Priors and Predictive Performance in Bayesian Model Averaging, with Application to Growth Determinants , 2007 .

[79]  X. Sala-i-Martin,et al.  Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach , 2000 .

[80]  Thomas J. Sargent,et al.  Business cycle modeling without pretending to have too much a priori economic theory , 1976 .

[81]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[82]  Dimitris Korobilis,et al.  Adaptive hierarchical priors for high-dimensional vector autoregressions , 2019 .

[83]  M. Steel,et al.  Model uncertainty in cross-country growth regressions , 2001 .

[84]  S. Ongena,et al.  Hazardous Times for Monetary Policy: What Do Twenty-Three Million Bank Loans Say about the Effects of Monetary Policy on Credit Risk-Taking? , 2007 .

[85]  Dacheng Xiu,et al.  Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-Frequency Data , 2016 .

[86]  G. Kapetanios,et al.  Forecasting Using Bayesian and Information-Theoretic Model Averaging , 2008 .

[87]  M. P. Wand,et al.  Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing , 2016, 1602.07412.

[88]  Andros Kourtellos,et al.  Is God in the Details? A Reexamination of the Role of Religion in Economic Growth , 2011 .

[89]  Dimitris Korobilis,et al.  Forecasting with Many Predictors Using Message Passing Algorithms , 2017 .

[90]  David B. Dunson,et al.  Quantifying uncertainty in variable selection with arbitrary matrices , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[91]  Francesco Belviso,et al.  Structural Factor-Augmented VARs (SFAVARs) and the Effects of Monetary Policy , 2006 .

[92]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[93]  Dimitris Korobilis,et al.  Forecasting in Vector Autoregressions with Many Predictors , 2008 .

[94]  Dimitrios Korompilis Magkas Hierarchical shrinkage priors for dynamic regressions with many predictors , 2011 .

[95]  Jurgen A. Doornik,et al.  Empirical Model Discovery and Theory Evaluation: Automatic Selection Methods in Econometrics , 2014 .

[96]  Serena Ng,et al.  Working Paper Series , 2019 .

[97]  Dimitris Korobilis Assessing the Transmission of Monetary Policy Using Time‐Varying Parameter Dynamic Factor Models , 2013 .

[98]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[99]  Dimitris Korobilis,et al.  VAR Forecasting Using Bayesian Variable Selection , 2009 .

[100]  A. Timmermann,et al.  Predictability of Stock Returns: Robustness and Economic Significance , 1995 .

[101]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.