A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties

[1]  G. Kilic,et al.  The Impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses , 2021, Optical Materials.

[2]  E. Kavaz,et al.  Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications , 2021 .

[3]  H. Tekin,et al.  Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: Synthesis and optical, structural, physical and thermal properties , 2021, Ceramics International.

[4]  M. Rashad,et al.  Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose , 2021 .

[5]  F. Hila,et al.  EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8) , 2021 .

[6]  E. Kavaz,et al.  An experimental work on radiation protection features of some bioactive compounds of Mannich bases , 2020 .

[7]  Ruiwang Liu,et al.  Regulation of luminescence properties of SBGNA:Eu3+ glass by the content of B2O3 and Al2O3 , 2020 .

[8]  R. El-Mallawany,et al.  Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5– P2O5–B2O3: Physical, thermal, and nuclear radiation shielding properties , 2020 .

[9]  Hesham MH Zakaly,et al.  Lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors , 2020, Journal of Materials Science: Materials in Electronics.

[10]  G. Kilic Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization , 2020, Journal of Materials Science: Materials in Electronics.

[11]  G. Kilic,et al.  The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses , 2020, Applied Physics A.

[12]  G. Kilic,et al.  Synthesis of novel AgO-doped vanadium–borophosphate semiconducting glasses and investigation of their optical, structural, and thermal properties , 2020, Journal of Materials Science: Materials in Electronics.

[13]  R. El-Mallawany,et al.  FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses , 2020, Journal of Materials Science: Materials in Electronics.

[14]  L. Kassab,et al.  Newly developed tellurium oxide glasses for nuclear shielding applications: An extended investigation , 2020 .

[15]  E. Kavaz,et al.  The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications , 2019, Materials Research Express.

[16]  U. Perişanoğlu,et al.  Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code , 2019, Progress in Nuclear Energy.

[17]  V. Sathe,et al.  Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses , 2019, Journal of Non-Crystalline Solids.

[18]  H. Tekin,et al.  Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system , 2019, Results in Physics.

[19]  G. Kilic,et al.  Characterization of Er3+ doped ZnTeTa semiconducting oxide glass , 2019, Journal of Materials Science: Materials in Electronics.

[20]  H. Tekin,et al.  Structural, UV and shielding properties of ZBPC glasses , 2019, Journal of Non-Crystalline Solids.

[21]  M. El-Nahass,et al.  The evolution of gamma-rays sensing properties of pure and doped phthalocyanine , 2017 .

[22]  G. Qin,et al.  Ho 3+ /Yb 3+ co-doped TeO 2 -BaF 2 -Y 2 O 3 glasses for ∼1.2 μm laser applications , 2017 .

[23]  T. Yanagida,et al.  Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO–Al2O3–B2O3-based glasses , 2017 .

[24]  H. Tekin,et al.  SHIELDING PROPERTIES AND EFFECTS OF WO3 AND PbO ON MASS ATTENUATION COEFFICIENTS BY USING MCNPX CODE , 2017 .

[25]  A. Abdelghany,et al.  Optical and μ-FTIR mapping: A new approach for structural evaluation of V2O5-lithium fluoroborate glasses , 2016 .

[26]  S. Lee,et al.  DSB:Ce3+ scintillation glass for future , 2015 .

[27]  M. Ghazali,et al.  Studying the Effect of ZnO on Physical and Elastic Properties of (ZnO)x(P2O5)1−x Glasses Using Nondestructive Ultrasonic Method , 2015 .

[28]  M. S. Dahiya,et al.  EPR, FTIR, thermal and electrical properties of VO2+ doped BaCl2⋅BaO⋅B2O3 glasses , 2015 .

[29]  M. Ferid,et al.  Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses , 2014 .

[30]  Virender Kundu,et al.  Effect of stepwise replacement of LiF by ZnO on structural and optical properties of LiF.B_2O_3 glasses , 2013 .

[31]  V. Kumar,et al.  Electrical and spectroscopic properties of Fe2O3 doped Na2SO4–BaO–P2O5 glass system , 2012 .

[32]  E. Culea,et al.  Structural and magnetic properties of zinc ferrite incorporated in amorphous matrix , 2011 .

[33]  V. C. Mouli,et al.  Optical, physical and structural studies of boro-zinc tellurite glasses , 2011 .

[34]  H. Zayed,et al.  Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses , 2010 .

[35]  Y. Saddeek Synthesis and properties of MoO3–V2O5–PbO glasses , 2009 .

[36]  M. Farouk,et al.  Structural properties of Li–borate glasses doped with Sm3+ and Eu3+ ions , 2009 .

[37]  Y. Saddeek,et al.  FTIR and ultrasonic investigations on modified bismuth borate glasses , 2009 .

[38]  R. V. Anavekar,et al.  Elastic properties and spectroscopic studies of Li2O-B2O3-V2O5 glasses , 2008 .

[39]  Chih-Wei Cheng,et al.  Properties and structure of (1 − x)Li2O–xNa2O–Al2O3–4SiO2 glass systems , 2007 .

[40]  N. Veeraiah,et al.  Study on some physical properties of Li2O–MO–B2O3: V2O5 glasses , 2004 .

[41]  M. Ferraris,et al.  Novel Er-doped PbO and B2O3 based glasses: investigation of quantum efficiency and non-radiative transition probability for 1.5 μm broadband emission fluorescence , 2003 .

[42]  I. Ardelean,et al.  Raman study on B2O3–CaO glasses , 2003 .

[43]  M. Wasiucionek,et al.  Electrical properties of AgI–Ag2O–V2O5–P2O5 glasses , 2003 .

[44]  P. Becker Thermal and optical properties of glasses of the system Bi2O3 – B2O3 , 2003 .

[45]  S. Yawale,et al.  Infrared spectra of zinc doped lead borate glasses , 2002 .

[46]  Delbert E. Day,et al.  Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I , 2001 .

[47]  M. Vallet‐Regí,et al.  Bioactivity of a CaO−SiO2 Binary Glasses System , 2000 .

[48]  I. Bashter,et al.  Calculation of radiation attenuation coefficients for shielding concretes , 1997 .

[49]  B. Bae,et al.  Crystallization of copper metaphosphate glass , 1993 .

[50]  R. Brow Nature of alumina in phosphate glass. I: Properties of sodium aluminophosphate glass , 1993 .

[51]  B. Bae,et al.  Oxidation–Reduction Equilibrium in Copper Phosphate Glass Melted in Air , 1991 .

[52]  D. F. Swinehart,et al.  The Beer-Lambert Law , 1962 .