Hybrid Multiobjective Optimization Algorithm for PM Motor Design

This paper proposes a hybrid, multiobjective optimization algorithm enabling global optimum tracking in permanent-magnet (PM) traction motor design. The methodology developed is based on the Artificial Bee Colony technique, strength Pareto evolutionary algorithm, and differential evolution strategy ensuring fast and reliable convergence to the optimal Pareto front. The effectiveness of the derived methodology is compared with other well-established and powerful algorithms from the literature through both appropriate test functions and an application example concerning an unequal teeth surface-mounted PM wheel motor design.

[1]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[2]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[3]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[4]  Minos E. Beniakar,et al.  Strength Pareto Evolutionary Optimization of an In-Wheel PM Motor With Unequal Teeth for Electric Traction , 2015, IEEE Transactions on Magnetics.

[5]  Byran J. Smucker,et al.  On using the hypervolume indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental design , 2015 .

[6]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Lin Yang,et al.  Design Optimization of a Permanent Magnet Motor Derived From a General Magnetization Pattern , 2015, IEEE Transactions on Magnetics.

[9]  S. L. Ho,et al.  A Modification of Artificial Bee Colony Algorithm Applied to Loudspeaker Design Problem , 2014, IEEE Transactions on Magnetics.

[10]  C. Koh,et al.  An Improved Differential Evolution Algorithm Adopting $\lambda$ -Best Mutation Strategy for Global Optimization of Electromagnetic Devices , 2013, IEEE Transactions on Magnetics.

[11]  S. L. Ho,et al.  An Improved Artificial Bee Colony Algorithm for Optimal Design of Electromagnetic Devices , 2013, IEEE Transactions on Magnetics.

[12]  Minos E. Beniakar,et al.  Multiobjective Evolutionary Optimization of a Surface Mounted PM Actuator With Fractional Slot Winding for Aerospace Applications , 2014, IEEE Transactions on Magnetics.

[13]  L dos Santos Coelho,et al.  Gaussian Artificial Bee Colony Algorithm Approach Applied to Loney's Solenoid Benchmark Problem , 2010, IEEE Transactions on Magnetics.