Geometrical Models for Substitutions

We consider a substitution associated with the Arnoux–Yoccoz interval exchange transformation (IET) related to the tribonacci substitution. We construct the so-called stepped lines associated with the fixed points of the substitution in the abelianization (symbolic) space. We analyze various projections of the stepped line, recovering the Rauzy fractal, a Peano curve related to work in [Arnoux 88], another Peano curve related to the work of [McMullen 09] and [Lowenstein et al. 07], and also the interval exchange transformation itself.

[1]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[2]  P. Arnoux Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore , 1988 .

[3]  Pascal Hubert,et al.  Veech groups without parabolic elements , 2005 .

[4]  V. Sirvent Geodesic laminations as geometric realizations of Pisot substitutions , 2000, Ergodic Theory and Dynamical Systems.

[5]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[6]  V. Sirvent Identifications and Dimension of the Rauzy Fractal , 1997 .

[7]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[8]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[9]  Joshua P. Bowman ORIENTATION-REVERSING INVOLUTIONS OF THE GENUS 3 ARNOUX{YOCCOZ SURFACE AND RELATED SURFACES , 2008, 0812.3144.

[10]  F. Vivaldi,et al.  Interval exchange transformations over algebraic number fields: the cubic Arnoux–Yoccoz model , 2007 .

[11]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[12]  Martin Möller,et al.  The Arnoux–Yoccoz Teichmüller disc , 2009 .

[13]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[14]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[15]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[16]  A. Fathi Some compact invariant sets for hyperbolic linear automorphisms of torii , 1988, Ergodic Theory and Dynamical Systems.

[17]  Jean Marie Dumont,et al.  Digital sum moments and substitutions , 1993 .