Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins.

Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjögren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.

[1]  R. Zahedi,et al.  Two‐dimensional benzyldimethyl‐n‐hexadecylammonium chloride/SDS‐PAGE for membrane proteomics , 2005, Proteomics.

[2]  D. Pauli,et al.  An unusual split Drosophila heat shock gene expressed during embryogenesis, pupation and in testis. , 1988, Journal of molecular biology.

[3]  T. Lithgow,et al.  The nascent polypeptide‐associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo , 2002, FEBS letters.

[4]  B. Skoog,et al.  Calculation of the isoelectric points of polypeptides from the amino acid composition , 1986 .

[5]  Walter Neupert Protein import into mitochondria. , 1997 .

[6]  N. Pfanner,et al.  Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. , 2000, Analytical biochemistry.

[7]  N. Pfanner,et al.  Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase , 1999, Nature.

[8]  R. Jensen,et al.  Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. , 2002, Biochimica et biophysica acta.

[9]  C. Jacq,et al.  The role of the 3' untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells. , 2003, Molecular biology of the cell.

[10]  M. Gautschi,et al.  Nascent-polypeptide-associated complex , 2002, Cellular and Molecular Life Sciences CMLS.

[11]  N. Pfanner,et al.  The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44 , 1997, The EMBO journal.

[12]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[13]  James I. Garrels,et al.  Annotating the human proteome: the Human Proteome Survey Database (HumanPSDTM) and an in-depth target database for G protein-coupled receptors (GPCR-PDTM) from Incyte Genomics , 2002, Nucleic Acids Res..

[14]  S. Kohlwein,et al.  Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. , 1998, Molecular biology of the cell.

[15]  W. Neupert,et al.  Import into Mitochondria, Folding and Retrograde Movement of Fumarase in Yeast* , 1998, The Journal of Biological Chemistry.

[16]  Marjan S. Bolouri,et al.  Integrated Analysis of Protein Composition, Tissue Diversity, and Gene Regulation in Mouse Mitochondria , 2003, Cell.

[17]  S. Kohlwein,et al.  Identification and Characterization of Major Lipid Particle Proteins of the Yeast Saccharomyces cerevisiae , 1999, Journal of bacteriology.

[18]  C. Jacq,et al.  Why are many mRNAs translated to the vicinity of mitochondria: a role in protein complex assembly? , 2005, Gene.

[19]  C. Koehler New developments in mitochondrial assembly. , 2004, Annual review of cell and developmental biology.

[20]  J. Ring,et al.  [Sjögren-Larsson syndrome]. , 2000, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete.

[21]  Antoine Margeot,et al.  Genome‐wide analysis of mRNAs targeted to yeast mitochondria , 2002, EMBO reports.

[22]  S. Dwight,et al.  Genetic and physical maps of Saccharomyces cerevisiae. , 1997, Methods in enzymology.

[23]  John D. Scott,et al.  Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics , 2002, The Journal of cell biology.

[24]  R. Hallberg,et al.  Cytochromes c 1 and b 2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism , 1992, Cell.

[25]  S. Rospert,et al.  Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. , 1999, Molecular biology of the cell.

[26]  F. Hartl,et al.  Successive translocation into and out of the mitochondrial matrix: Targeting of proteins to the intermembrane space by a bipartite signal peptide , 1987, Cell.

[27]  F. Legeai,et al.  Predotar: A tool for rapidly screening proteomes for N‐terminal targeting sequences , 2004, Proteomics.

[28]  C. Kozany,et al.  Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions , 2005, FEBS letters.

[29]  N. Pfanner,et al.  Protein Import Channel of the Outer Mitochondrial Membrane: a Highly Stable Tom40-Tom22 Core Structure Differentially Interacts with Preproteins, Small Tom Proteins, and Import Receptors , 2001, Molecular and Cellular Biology.

[30]  T. Endo,et al.  tRNA Actively Shuttles Between the Nucleus and Cytosol in Yeast , 2005, Science.

[31]  O. Pines,et al.  Single translation—dual destination: mechanisms of dual protein targeting in eukaryotes , 2005, EMBO reports.

[32]  K. Mihara Cell biology: Moving inside membranes , 2003, Nature.

[33]  R. A. Butow,et al.  Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria , 1975, The Journal of cell biology.

[34]  R. Lill,et al.  Iron-sulfur-protein biogenesis in eukaryotes. , 2005, Trends in biochemical sciences.

[35]  Z. Zhai,et al.  AMID, an Apoptosis-inducing Factor-homologous Mitochondrion-associated Protein, Induces Caspase-independent Apoptosis* , 2002, The Journal of Biological Chemistry.

[36]  N. Pfanner,et al.  Import of precursor proteins into isolated yeast mitochondria. , 2006, Methods in molecular biology.

[37]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Endo,et al.  Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles , 2003, Journal of Cell Science.

[39]  N. Pfanner,et al.  [19] Mitochondrial receptor complex from Neurospora crassa and Saccharomyces cerevisiae , 1995 .

[40]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[41]  Eoin Fahy,et al.  MITOPRED: a web server for the prediction of mitochondrial proteins , 2004, Nucleic Acids Res..

[42]  D. Wallace A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine , 2005, Annual review of genetics.

[43]  R. Jensen,et al.  Mitochondrial building blocks. , 2004, Trends in cell biology.

[44]  Ronald J. Moore,et al.  Integrative Analysis of the Mitochondrial Proteome in Yeast , 2004, PLoS biology.

[45]  Constance J Jeffery,et al.  Mass spectrometry and the search for moonlighting proteins. , 2005, Mass spectrometry reviews.

[46]  K. Dietmeier,et al.  Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins , 1998, Nature.

[47]  T. Endo,et al.  Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. , 2003, Molecular biology of the cell.

[48]  Karl Mechtler,et al.  An improved method for tracking and reducing the void volume in nano HPLC–MS with micro trapping columns , 2003, Analytical and bioanalytical chemistry.

[49]  E. Karlberg,et al.  Mitochondrial gene history and mRNA localization: is there a correlation? , 2003, Nature Reviews Genetics.

[50]  N. Pfanner,et al.  Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins , 2004, The EMBO journal.

[51]  R. Kölling,et al.  The yeast deubiquitinating enzyme Ubp16 is anchored to the outer mitochondrial membrane , 2003, FEBS letters.

[52]  K. Mechtler,et al.  Automated, on‐line two‐dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests , 2004, Proteomics.

[53]  G. Daum,et al.  Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. , 1982, The Journal of biological chemistry.

[54]  S. Nishikawa,et al.  Identification of Tim40 That Mediates Protein Sorting to the Mitochondrial Intermembrane Space* , 2004, Journal of Biological Chemistry.

[55]  C. Jacq,et al.  In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function , 2002, The EMBO journal.

[56]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[57]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[58]  E. Schon,et al.  Mitochondrial genetics and disease. , 2000, Trends in biochemical sciences.

[59]  Jean-Claude Martinou,et al.  Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane* , 2003, Journal of Biological Chemistry.

[60]  Bradford W. Gibson,et al.  Characterization of the human heart mitochondrial proteome , 2003, Nature Biotechnology.

[61]  N. Pfanner,et al.  The sorting signal of cytochrome b2 promotes early divergence from the general mitochondrial import pathway and restricts the unfoldase activity of matrix Hsp70. , 1995, The EMBO journal.

[62]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[63]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[64]  A. Kastaniotis,et al.  The Yeast Mitochondrial Proteome, a Study of Fermentative and Respiratory Growth* , 2004, Journal of Biological Chemistry.

[65]  Walter Neupert,et al.  Protein Import into Mitochondria , 2004 .

[66]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[67]  Helmut E Meyer,et al.  Multidimensional nano-HPLC for analysis of protein complexes , 2003, Journal of the American Society for Mass Spectrometry.

[68]  L. W. Parks,et al.  Sterol methylation in Saccharomyces cerevisiae , 1984, Journal of bacteriology.

[69]  W. Neupert,et al.  Targeting of cytochrome b2 into the mitochondrial intermembrane space: specific recognition of the sorting signal. , 1993, The EMBO journal.

[70]  D. Newmeyer,et al.  Mitochondria Releasing Power for Life and Unleashing the Machineries of Death , 2003, Cell.

[71]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[72]  Ronald W. Davis,et al.  Systematic screen for human disease genes in yeast , 2002, Nature Genetics.

[73]  Trevor Lithgow,et al.  Assembling the mitochondrial outer membrane , 2004, Nature Structural &Molecular Biology.

[74]  N. Pfanner,et al.  Mechanisms of Protein Import into Mitochondria , 2003, Current Biology.

[75]  D. Green,et al.  The Pathophysiology of Mitochondrial Cell Death , 2004, Science.

[76]  K. Verner Co-translational protein import into mitochondria: an alternative view. , 1993, Trends in biochemical sciences.

[77]  Thomas Meitinger,et al.  Mechanisms for multiple intracellular localization of human mitochondrial proteins. , 2004, Mitochondrion.

[78]  W. Rizzo,et al.  Fatty aldehyde dehydrogenase: genomic structure, expression and mutation analysis in Sjögren-Larsson syndrome. , 2001, Chemico-biological interactions.

[79]  V. Haucke,et al.  Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments , 1994, Cell.

[80]  W. Rizzo,et al.  Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization. , 1997, Biochimica et biophysica acta.

[81]  C. Kurland,et al.  The Dual Origin of the Yeast Mitochondrial Proteome , 2000, Yeast.

[82]  R. Masaki,et al.  Microsomal aldehyde dehydrogenase or its cross-reacting protein exists in outer mitochondrial membranes and peroxisomal membranes in rat liver. , 1993, Cell structure and function.

[83]  P. Steinert,et al.  Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene , 1996, Nature Genetics.

[84]  Rebecca L. Frederick,et al.  Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway , 2004, The Journal of cell biology.

[85]  D. Eisenberg,et al.  Localizing proteins in the cell from their phylogenetic profiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Walter Neupert,et al.  Mitochondriomics or what makes us breathe. , 2004, Trends in genetics : TIG.