Symbolic Nodal Analysis of Circuits Using Pathological Elements

The nullor as a network element is useful in the synthesis and analysis of active networks. It can be used to formulate the system of equations for symbolic nodal analysis. This brief presents a systematic analytical technique that performs efficient nodal analysis for RLC -nullor-mirror networks directly without replacing the mirror elements with their nullor equivalents. It is conducive to achieving high-performance symbolic nodal analysis since the RLC-nullor-mirror representation possesses reduced circuit complexity compared to the RLC-nullor equivalent. The feasibility and validity are demonstrated by two representative current-mode and voltage-mode circuits.

[1]  James A. Svoboda,et al.  A Linear Active Network Analysis Program Suitable for a Class Project , 1984, IEEE Transactions on Education.

[2]  Sheldon X.-D. Tan,et al.  Symbolic formulation method for mixed-mode analog circuits using nullors , 2009, 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009).

[3]  J. B. Grimbleby Symbolic analysis of circuits containing active elements , 1981 .

[4]  Georges Gielen,et al.  Symbolic analysis methods and applications for analog circuits: a tutorial overview , 1994, Proc. IEEE.

[5]  Ahmed M. Soliman,et al.  Use of Mirror Elements in the Active Device Synthesis by Admittance Matrix Expansion , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Raj Senani,et al.  Bibliography on Nullors and Their Applications in Circuit Analysis, Synthesis and Design , 2002 .

[7]  Ahmed M. Soliman,et al.  On the systematic synthesis of CCII‐based floating simulators , 2010, Int. J. Circuit Theory Appl..

[8]  Ahmed M. Soliman,et al.  A new approach for using the pathological mirror elements in the ideal representation of active devices , 2010, Int. J. Circuit Theory Appl..

[9]  H. Schmid,et al.  Approximating the universal active element , 2000 .

[10]  A. Leuciuc Using nullors for realisation of inverse transfer functions and characteristics , 1997 .

[11]  C. Sánchez-López,et al.  Symbolic analysis of analog circuits containing voltage mirrors and current mirrors , 2010 .

[12]  J. A. Svoboda,et al.  Using nullors to analyse linear networks , 1986 .

[13]  A. Toker,et al.  The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters , 2003 .

[14]  Leonard T. Bruton RC-Active Circuits. Theory and Design , 1980 .

[15]  Carlos Sánchez-López,et al.  Symbolic analysis of (MO)(I)CCI(II)(III)‐based analog circuits , 2010, Int. J. Circuit Theory Appl..

[16]  I. A. Awad,et al.  Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications , 1999 .

[17]  Ahmed M. Soliman,et al.  On the Voltage Mirrors and the Current Mirrors , 2002 .

[18]  Ahmed M. Soliman,et al.  Generation, modeling, and analysis of CCII‐based gyrators using the generalized symbolic framework for linear active circuits , 2008, Int. J. Circuit Theory Appl..

[19]  Ahmed M. Soliman,et al.  The voltage mirror–current mirror pair as a universal element , 2010, Int. J. Circuit Theory Appl..

[20]  A. C. Davies Matrix analysis of networks containing nullators and norators , 1966 .

[21]  Chun-Yueh Huang,et al.  Characteristic Investigation of New Pathological Elements , 2005 .

[22]  J. B. Grimbleby Symbolic analysis of networks containing current conveyors , 1992 .

[23]  David G. Haigh,et al.  Symbolic Framework for Linear Active Circuits Based on Port Equivalence Using Limit Variables , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Ahmed M. Soliman,et al.  The inverting second generation current conveyors as universal building blocks , 2008 .