Increasing the bandwidth of a liquid crystal phased array adaptive optics system

In previous work we demonstrated a nematic liquid crystal MEMS adaptive optics system for observation of low earth orbit satellites. However the closed loop bandwidth was limited to 40 Hz due to latency in the interface electronics between the control computer and the device driver. This bandwidth is marginal for compensation of atmospheric turbulence effects, where the Greenwood frequency is often in excess of 100 Hz. Recently the interface has been redesigned and as a result we have been able to nearly double the bandwidth. In this paper we describe laboratory experiments with the faster system.