Atomic-scale characterization of the precipitates in a Mg-Gd-Y-Zn-Mn alloy using scanning transmission electron microscopy

[1]  Yiqiang Hao,et al.  Characterization and energy calculation of the S/Al interface of Al–Cu–Mg alloys: Experimental and first-principles calculations , 2022, Vacuum.

[2]  Yiqiang Hao,et al.  Coarsening mechanism of T1 precipitation and calculation of T1/Al interface properties in 2198 Al–Cu–Li alloys: Experimental and DFT studies , 2022, Vacuum.

[3]  Bin Chen,et al.  Alignment and strengthening effect of β ′ precipitates in Mg-Gd-Y-Zr during ageing process studied by HAADF-STEM and GPA , 2021, Philosophical Magazine Letters.

[4]  Jinxing Wang,et al.  Formation of an abnormal texture in Mg-Gd-Y-Zn-Mn alloy and its effect on mechanical properties by altering extrusion parameters , 2021, Materials Science and Engineering: A.

[5]  Bing Chen,et al.  Obtaining γ″ phase by addition of Mn in Mg-Gd-Y-Zn-Ni-Mn alloy: atomic-scale insights by scanning transmission electron microscopy , 2021 .

[6]  Jinxing Wang,et al.  Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting , 2020, Journal of Materials Science & Technology.

[7]  Jinxing Wang,et al.  Achieving enhanced mechanical properties in Mg-Gd-Y-Zn-Mn alloy by altering dynamic recrystallization behavior via pre-ageing treatment , 2020, Materials Science and Engineering: A.

[8]  Bing Chen,et al.  Effects of nanoprecipitates and LPSO structure on deformation and fracture behaviour of high-strength Mg-Gd-Y-Zn-Mn alloys , 2020 .

[9]  S. Kamado,et al.  Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr , 2019, Journal of Magnesium and Alloys.

[10]  W. Ding,et al.  Unexpected capture of Guinier-Preston zone and γ″ phase in as-cast Mg-Gd-Y-Zn-Ni-Mn alloy: Atomic-scale insights , 2019, Materials Characterization.

[11]  Song-Jeng Huang,et al.  Ageing behavior and mechanisms of strengthening and toughening of ultrahigh-strength Mg-Gd-Y-Zn-Mn alloy , 2019, Materials Science and Engineering: A.

[12]  Yujuan Wu,et al.  A super high-strength Mg-Gd-Y-Zn-Mn alloy fabricated by hot extrusion and strain aging , 2019, Materials & Design.

[13]  Xuefei Chen,et al.  Atomic structure of γ″ phase in Mg–Gd–Y–Ag alloy induced by Ag addition , 2019, Philosophical Magazine.

[14]  F. Pan,et al.  Microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy sheets processed by large-strain high-efficiency rolling , 2019, Materials Science and Engineering: A.

[15]  Qudong Wang,et al.  The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Y-Ag-Zr alloy , 2019, Acta Materialia.

[16]  Song-Jeng Huang,et al.  Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long period stacking ordered phase , 2018 .

[17]  Bing Chen,et al.  Nano-scale precipitation and phase growth in Mg-Gd binary alloy: An atomic-scale investigation using HAADF-STEM , 2018 .

[18]  D. Choudhuri,et al.  Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening , 2017, Nature Communications.

[19]  Shu-nong Jiang,et al.  Hot compression behavior of the Mg-Gd-Y-Zn-Zr alloy filled with intragranular long-period stacking ordered phases , 2017 .

[20]  S. Haigh,et al.  Elemental distribution within the long-period stacking ordered structure in a Mg-Gd-Zn-Mn alloy , 2017 .

[21]  Yujuan Wu,et al.  Precipitation of Long‐Period Stacking Ordered Structure in Mg–Gd–Zn–Mn Alloy   , 2017 .

[22]  Jialei Chen,et al.  Effects of Mn addition on the microstructures and mechanical properties of the Mg-15Gd-1Zn alloy , 2017 .

[23]  C. Xu,et al.  Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates , 2017, Scientific Reports.

[24]  Bing Chen,et al.  Precipitation in Mg–Nd–Y–Zr–Ca Alloy during Isothermal Aging: A Comprehensive Atomic‐Scaled Study by Means of HAADF‐STEM   , 2017 .

[25]  T. Kiguchi,et al.  On atomic structure of Guinier-Preston Zone in Mg-Zn-Gd alloy , 2017, 1709.03769.

[26]  Bing Chen,et al.  Unravelling the Structure of γ″ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation , 2016 .

[27]  Bing Chen,et al.  Precipitation in Mg-Gd-Y-Zr Alloy: Atomic-scale insights into structures and transformations , 2016 .

[28]  D. Raabe,et al.  The role of metastable LPSO building block clusters in phase transformations of an Mg–Y–Zn alloy , 2016 .

[29]  Yuman Zhu,et al.  Solute clusters and GP zones in binary Mg–RE alloys , 2016 .

[30]  K. Hono,et al.  Precipitation in a Ag-Containing Mg-Y-Zn Alloy , 2016, Metallurgical and Materials Transactions A.

[31]  Chao Xu,et al.  Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing , 2015 .

[32]  K. Nie,et al.  Abundant long period stacking ordered structure induced by Ni addition into Mg–Gd–Zn alloy , 2014 .

[33]  Yanbo Wang,et al.  Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy , 2014 .

[34]  Song-Jeng Huang,et al.  Effect of Gd and Y contents on the microstructural evolution of long period stacking ordered phase and the corresponding mechanical properties in Mg–Gd–Y–Zn–Mn alloys , 2014 .

[35]  Ding Li,et al.  Effects of Mn on the microstructure and mechanical properties of long period stacking ordered Mg95Zn2.5Y2.5 alloy , 2013 .

[36]  Song-Jeng Huang,et al.  High-strength and good-ductility Mg–RE–Zn–Mn magnesium alloy with long-period stacking ordered phase , 2013 .

[37]  Yunzhi Wang,et al.  A simulation study of the shape of β′ precipitates in Mg–Y and Mg–Gd alloys , 2013 .

[38]  J. Nie Precipitation and Hardening in Magnesium Alloys , 2012, Metallurgical and Materials Transactions A.

[39]  P. Yang,et al.  Microstructure and mechanical properties of the Mg–Gd–Y–Zn–Zr alloy fabricated by semi-continuous casting , 2012 .

[40]  Xiaopeng Liang,et al.  Microstructures and Properties of Extruded Mg-Gd-Y-Zr Alloys Containing Zn , 2012, Journal of Materials Engineering and Performance.

[41]  S. Kamado,et al.  Fabrication of extraordinary high-strength magnesium alloy by hot extrusion , 2009 .

[42]  Bin Wang,et al.  Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy , 2009 .

[43]  K. Hono,et al.  Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy , 2008 .

[44]  M. Nishijima,et al.  Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature , 2007 .

[45]  T. Ohkubo,et al.  Effect of Zn additions on the age-hardening of Mg-2.0gd-1.2Y-0.2Zr alloys , 2007 .

[46]  S. Kamado,et al.  Alloy Development of High Toughness Mg-Gd-Y-Zn-Zr Alloys , 2006 .

[47]  Xiang Gao,et al.  Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn , 2005 .

[48]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[49]  Stephen J. Pennycook,et al.  Z-contrast stem for materials science , 1989 .