The Role of Motion Dynamics in the Design, Control and Stability of Bipedal and Quadrupedal Robots

Fundamental principles and recent methods for investigating the nonlinear dynamics of legged robot motions with respect to control, stability and design are discussed. One of them is the still challenging problem of producing dynamically stable gaits. The generation of fast walking or running motions require methods and algorithms adept at handling the nonlinear dynamical effects and stability issues which arise. Reduced, recursive multibody algorithms, a numerical optimal control package, and new stability and energy performance indices are presented which are well-suited for this purpose. Difficulties and open problems are discussed along with numerical investigations into the proposed gait generation scheme. Our analysis considers both biped and quadrupedal gaits with particular reference to the problems arising in soccer-playing tasks encountered at the RoboCup where our team, the Darmstadt Dribbling Dackels, participates as part of the German Team in the Sony Legged Robot League.

[1]  D. Jacobson,et al.  Studies of human locomotion via optimal programming , 1971 .

[2]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[3]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[4]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[5]  K. Kreutz,et al.  A Spatial Operator Algebra For Manipulator Modeling And Control , 1988, Other Conferences.

[6]  Isao Shimoyama,et al.  Dynamics in the dynamic walk of a quadruped robot , 1989, Adv. Robotics.

[7]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[8]  Dragan Stokic,et al.  Dynamics of Biped Locomotion , 1990 .

[9]  Y. Hurmuzlu,et al.  On the measurement of dynamic stability of human locomotion. , 1994, Journal of biomechanical engineering.

[10]  Shuuji Kajita,et al.  Experimental study of biped dynamic walking in the linear inverted pendulum mode , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[11]  Scott McMillan,et al.  Efficient computation of articulated-body inertias using successive axial screws , 1995, IEEE Trans. Robotics Autom..

[12]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[13]  Shigeo Hirose,et al.  Intermittent trot gait of a quadruped walking machine dynamic stability control of an omnidirectional walk , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[14]  Hilding Elmqvist,et al.  Modeling of multibody systems with the object-oriented modeling language Dymola , 1996 .

[15]  Duc Truong Pham,et al.  A Variational Approach To The Optimization of Gait For a Bipedal Robot , 1996 .

[16]  Martin Buehler,et al.  Design, control, and energetics of an electrically actuated legged robot , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[17]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[18]  G. Stavroulakis Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .

[19]  D. Wigley,et al.  Teaching a new dog old tricks? , 1998, Structure.

[20]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[21]  Kenneth Kreutz-Delgado,et al.  Multibody dynamical algorithms, numerical optimal control, with detailed studies in the control of jet engine compressors and biped walking , 1999 .

[22]  Oskar von Stryk,et al.  User's guide for DIRCOL (Version 2.1): a direct collacation method for the numerical solution of optimal control problems , 1999 .

[23]  K. Kreutz-Delgado,et al.  Optimal biped walking with a complete dynamical model , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[24]  Yong-San Yoon,et al.  Dynamic instant gait stability measure for quadruped walking robot , 1999, Robotica.

[25]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[26]  David E. Orin,et al.  Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[27]  F. Pfeiffer,et al.  Control of a biped jogging robot , 2000, 6th International Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494).

[28]  Dinesh K. Pai,et al.  Forward dynamics algorithms for multibody chains and contact , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[29]  Zentrum Mathematik Towards Optimal Hybrid Control Solutions for Gait Patterns of a Quadruped , 2000 .

[30]  Richard W. Longman,et al.  Human-like actuated walking that is asymptotically stable without feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[31]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[32]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[33]  Friedrich Pfeiffer,et al.  Towards the design of a biped jogging robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[34]  O. V. Stryk,et al.  Numerical mixed-integer optimal control and motorized traveling salesmen problems , 2001 .

[35]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[36]  Masayuki Inaba,et al.  Online mixture and connection of basic motions for humanoid walking control by footprint specification , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Martin Buss,et al.  Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications , 2002 .

[38]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .