On invariant observers

A definition of invariant observer and compatible output function is proposed and motivated. For systems admitting a Lie symmetry-group G of dimension less or equal to the state dimension and with a G-compatible output, an explicit procedure based on the moving frame method is proposed to construct such invariant observers. It relies on an invariant frame and a complete set of invariant estimation errors. Two examples of engineering interest are considered: an exothermic chemical reactor and an inertial navigation problem. For both examples we show how invariance and the proposed construction can be a useful guide to design non-linear convergent observers, although the part of the design procedure which achieves asymptotic stability is not systematic and must take into account the specific nonlinearities of the case under study.

[1]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[2]  Rutherford Aris,et al.  An analysis of chemical reactor stability and control—II: The evolution of proportional control☆ , 1958 .

[3]  Issa Amadou Tall,et al.  Nonlinearizable single-input control systems do not admit stationary symmetries , 2002, Syst. Control. Lett..

[4]  S. Marcus,et al.  The structure of nonlinear control systems possessing symmetries , 1985 .

[5]  J. Rudolph,et al.  A block triangular nonlinear observer normal form , 1994 .

[6]  Nasradine Aghannan Contrôle de réacteurs de polymérisation, Observateur et Invariance , 2003 .

[7]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[8]  P. Rouchon,et al.  On invariant asymptotic observers , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[9]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[10]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[11]  M. Zeitz,et al.  Extended Luenberger observer for non-linear multivariable systems , 1988 .

[12]  A. J. van der Schaft,et al.  On symmetries in optimal control , 1986 .

[13]  Jan C. Willems,et al.  Representations of symmetric linear dynamical systems , 1993 .

[14]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[15]  M. Zeitz,et al.  On nonlinear continuous observers , 1997 .

[16]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[17]  Rutherford Aris,et al.  An analysis of chemical reactor stability and control—III: The principles of programming reactor calculations. Some extensions☆ , 1958 .

[18]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .