Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations

The soil moisture changes (<inline-formula><tex-math notation="LaTeX">$\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula>) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less investigated for monitoring this parameter. DInSAR phase (<inline-formula><tex-math notation="LaTeX">${\boldsymbol{\varphi }}$</tex-math></inline-formula>) is sensitive to the changes in soil moisture (<inline-formula><tex-math notation="LaTeX">${{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula>), and thus, can be potentially used for monitoring <inline-formula><tex-math notation="LaTeX">$\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula>. In this article, the relations between <inline-formula><tex-math notation="LaTeX">${\boldsymbol{\varphi }}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula> over wheat, canola, corn, soybean, weed, peas, and bare fields were investigated using an empirical regression technique. To this end, dual-polarimetric C-band Sentinel-1A and quad-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) airborne datasets were employed. The regression model showed the coefficient of determination (R<sup>2</sup>) of 40% to 56% and RMSE of 4.3 vol.% to 6.1 vol.% between the measured and estimated <inline-formula><tex-math notation="LaTeX">$\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula> for different crop types when the temporal baseline (<inline-formula><tex-math notation="LaTeX">$\Delta {\boldsymbol{T}}$</tex-math></inline-formula>) was very short. As expected, higher accuracies were obtained using UAVSAR given its very short <inline-formula><tex-math notation="LaTeX">$\Delta {\boldsymbol{T}}$</tex-math></inline-formula> and its longer wavelength with R<sup>2</sup> of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for different crop types. However, using the Sentinel-1 data with the long <inline-formula><tex-math notation="LaTeX">$\Delta {\boldsymbol{T}}$</tex-math></inline-formula> and shorter wavelength (5.6 cm), the accuracies of <inline-formula><tex-math notation="LaTeX">${{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula> estimations decreased significantly. The results of this study demonstrated that using the <inline-formula><tex-math notation="LaTeX">${\boldsymbol{\varphi }}$</tex-math></inline-formula> information from Sentinel-1 data is a promising approach for monitoring <inline-formula><tex-math notation="LaTeX">${{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}$</tex-math></inline-formula> at an early growing season or before the crop starts growing, but using L-band SAR data and lower temporal baselines are recommended once the biomass increases.

[1]  Alessandro Parizzi,et al.  A SAR Interferometric Model for Soil Moisture , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Wen Hong,et al.  Analysis on Soil Moisture Estimation of SAR Data Based on Coherent Scattering Model , 2014 .

[3]  John M. Wahr,et al.  InSAR measurements of surface deformation over permafrost on the North Slope of Alaska , 2010 .

[4]  Douglas M. Bates,et al.  LINEAR AND NONLINEAR MIXED-EFFECTS MODELS , 1998 .

[5]  Irena Hajnsek,et al.  Separating the Influence of Vegetation Changes in Polarimetric Differential SAR Interferometry , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[6]  H. Zebker,et al.  High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. , 1999, Science.

[7]  D. Massonnet,et al.  Deflation of Mount Etna monitored by spaceborne radar interferometry , 1995, Nature.

[8]  Mahdi Hasanlou,et al.  Machine learning inversion approach for soil parameters estimation over vegetated agricultural areas using a combination of water cloud model and calibrated integral equation model , 2021, Journal of Applied Remote Sensing.

[9]  Irena Hajnsek,et al.  Soil Moisture Estimation Using Differential Radar Interferometry: Toward Separating Soil Moisture and Displacements , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Bruce Chapman,et al.  UAVSAR Polarimetric Calibration , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[12]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[13]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[14]  Irena Hajnsek,et al.  Influence of Vegetation Growth on the Polarimetric Zero-Baseline DInSAR Phase Diversity—Implications for Deformation Studies , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Piyush Agram,et al.  A noise model for InSAR time series , 2015 .

[16]  Zhong Lu,et al.  Can InSAR Coherence and Closure Phase Be Used to Estimate Soil Moisture Changes? , 2020, Remote. Sens..

[17]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[18]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[19]  G. Nesti,et al.  Laboratory experiments for the interpretation of phase shift in SAR interferograms , 1997 .

[20]  Mahdi Hasanlou,et al.  Semi-analytical soil moisture retrieval using PolSAR imagery , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[21]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[22]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[23]  M. Hasanlou,et al.  Validation of non-linear split window algorithm for land surface temperature estimation using Sentinel-3 satellite imagery: Case study; Tehran Province, Iran , 2021 .

[24]  Francesco De Zan,et al.  Vegetation and soil moisture inversion from SAR closure phases: First experiments and results , 2018, Remote Sensing of Environment.

[25]  G. Hamedani,et al.  On the Determination of the Bivariate Normal Distribution from Distributions of Linear Combinations of the Variables , 1975 .

[26]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[27]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[28]  S. D. M. ller,et al.  Polarisation: Applications in Remote Sensing , 2010 .

[29]  Raghav Menon,et al.  Laboratory Measurement of the DInSAR Response to Spatiotemporal Variations in Soil Moisture , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Irena Hajnsek,et al.  Soil Moisture Estimation in time with D-InSAR , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[31]  D. Massonnet,et al.  Deformation measurements using SAR interferometry: potential and limitations , 1998 .

[32]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[33]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[34]  D. Galloway,et al.  The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology , 2007 .

[35]  Kalifa Goita,et al.  Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10): Overview and Preliminary Results , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[36]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[37]  Irena Hajnsek,et al.  Assessment of soil moisture effects on L-band radar interferometry , 2015 .

[38]  Heather McNairn,et al.  Decomposition-Based Soil Moisture Estimation Using UAVSAR Fully Polarimetric Images , 2021, Agronomy.

[39]  E. Dwyer,et al.  Detecting changes in surface soil moisture content using differential SAR interferometry , 2013 .

[40]  Kamal Sarabandi,et al.  Microwave Radar and Radiometric Remote Sensing , 2013 .

[41]  Fawwaz T. Ulaby,et al.  Dielectric properties of soils in the 0.3-1.3-GHz range , 1995, IEEE Trans. Geosci. Remote. Sens..

[42]  Dennis R. Fatland,et al.  DInSAR measurement of soil moisture , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  Nazzareno Pierdicca,et al.  Sentinel-1 Sensitivity to Soil Moisture at High Incidence Angle and its Impact on Retrieval , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[44]  Pádraig M. Whelan,et al.  The Use of C- and L-Band Repeat-Pass Interferometric SAR Coherence for Soil Moisture Change Detection in Vegetated Areas , 2012 .