An interval approach based on expectation optimization for fuzzy random bilevel linear programming problems

This paper considers a class of bilevel linear programming problems in which the coefficients of both objective functions are fuzzy random variables. The main idea of this paper is to introduce the Pareto optimal solution in a multi-objective bilevel programming problem as a solution for a fuzzy random bilevel programming problem. To this end, a stochastic interval bilevel linear programming problem is first introduced in terms of α-cuts of fuzzy random variables. On the basis of an order relation of interval numbers and the expectation optimization model, the stochastic interval bilevel linear programming problem can be transformed into a multi-objective bilevel programming problem which is solved by means of weighted linear combination technique. In order to compare different optimal solutions depending on different cuts, two criterions are given to provide the preferable optimal solutions for the upper and lower level decision makers respectively. Finally, a production planning problem is given to demonstrate the feasibility of the proposed approach.

[1]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[2]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[3]  Miao-Ling Wang,et al.  Ranking Fuzzy Number Based on Lexicographic Screening Procedure , 2005, Int. J. Inf. Technol. Decis. Mak..

[4]  Masatoshi Sakawa,et al.  Interactive fuzzy random two-level linear programming through fractile criterion optimization , 2011, Math. Comput. Model..

[5]  Xu Han,et al.  Uncertain optimization of composite laminated plates using a nonlinear interval number programming method , 2008 .

[6]  Shiang-Tai Liu,et al.  A numerical solution method to interval quadratic programming , 2007, Appl. Math. Comput..

[7]  Samir A. Abass,et al.  An interval number programming approach for bilevel linear programming problem , 2010 .

[8]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[9]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[10]  Masatoshi Sakawa,et al.  Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity , 2012, Int. J. Mach. Learn. Cybern..

[11]  H. Rommelfanger,et al.  Linear programming with fuzzy objectives , 1989 .

[12]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[13]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[14]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[15]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[16]  Xingsi Xue,et al.  An interval programming approach for the bilevel linear programming problem under fuzzy random environments , 2014, Soft Comput..

[17]  Panos M. Pardalos,et al.  Editorial: Hierarchical and bilevel programming , 1996, J. Glob. Optim..

[18]  R. Kruse,et al.  Statistics with vague data , 1987 .

[19]  Masatoshi Sakawa,et al.  Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization , 2012, Central Eur. J. Oper. Res..

[20]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[21]  Tschangho John Kim,et al.  Solving nonlinear bilevel programming models of the equilibrium network design problem: A comparative review , 1992, Ann. Oper. Res..

[22]  Yuping Wang,et al.  An interval programming approach for bilevel linear programming problem with fuzzy random coefficients , 2013, 2013 IEEE Congress on Evolutionary Computation.

[23]  S. Dempe,et al.  On the solution of fuzzy bilevel programming problems , 2007 .

[24]  Herminia I. Calvete,et al.  On linear bilevel problems with multiple objectives at the lower level , 2011 .

[25]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[26]  Masatoshi Sakawa,et al.  Interactive fuzzy programming for fuzzy random two-level linear programming problems through probability maximization with possibility , 2013, Expert Syst. Appl..

[27]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[28]  H. Ishii,et al.  LINEAR PROGRAMMING PROBLEM WITH FUZZY RANDOM CONSTRAINT , 2000 .

[29]  Gang Du,et al.  Research on the method for interval linear bi-level programming based on a partial order on intervals , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[30]  Inés Couso,et al.  Random intervals as a model for imprecise information , 2005, Fuzzy Sets Syst..

[31]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[32]  Herminia I. Calvete,et al.  Linear bilevel programming with interval coefficients , 2012, J. Comput. Appl. Math..

[33]  Stephan Dempe,et al.  New Optimality Conditions for the Semivectorial Bilevel Optimization Problem , 2012, Journal of Optimization Theory and Applications.

[34]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[35]  Henri Bonnel,et al.  Semivectorial Bilevel Optimization on Riemannian Manifolds , 2015, Journal of Optimization Theory and Applications.

[36]  Kin Keung Lai,et al.  Manufacturer's revenue-sharing contract and retail competition , 2008, Eur. J. Oper. Res..

[37]  Z. Qiao,et al.  On solutions and distribution problems of the linear programming with fuzzy random variable coefficients , 1993 .

[38]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[39]  Stephan Dempe,et al.  On the calculation of a membership function for the solution of a fuzzy linear optimization problem , 2012, Fuzzy Sets Syst..

[40]  J. Morgan,et al.  Semivectorial Bilevel Optimization Problem: Penalty Approach , 2006 .

[41]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[42]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[43]  Masatoshi Sakawa,et al.  Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization , 2012, Oper. Res..

[44]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[45]  G. P. Liu,et al.  A nonlinear interval number programming method for uncertain optimization problems , 2008, Eur. J. Oper. Res..

[46]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[47]  Yue Zhang,et al.  The theory of fuzzy stochastic processes , 1992 .