THE GEOMETRY OF THE TWO-COMPONENT CAMASSA-HOLM AND DEGASPERIS-PROCESI EQUATIONS

We use geometric methods to study two natural two-component generalizations of the periodic Camassa–Holm and Degasperis–Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle Diff(S1) with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa–Holm equation, giving explicit examples of large subspaces of positive curvature.

[1]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[2]  A. Constantin,et al.  TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems , 2002 .

[3]  Jonatan Lenells,et al.  Riemannian geometry on the diffeomorphism group of the circle , 2007 .

[4]  Youjin Zhang,et al.  A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.

[5]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[6]  Z. Yin,et al.  Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system , 2010 .

[7]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[8]  Z. Popowicz A two-component generalization of the Degasperis–Procesi equation , 2006 .

[9]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[10]  Steve Shkoller Geometry and Curvature of Diffeomorphism Groups withH1Metric and Mean Hydrodynamics , 1998 .

[11]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[12]  B. Kolev Some geometric investigations on the Degasperis-Procesi shallow water equation , 2009 .

[13]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[14]  Darryl D. Holm,et al.  Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  J. Escher,et al.  The Degasperis–Procesi equation as a non-metric Euler equation , 2009, 0908.0508.

[16]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[17]  THE PERIODIC μ-b-EQUATION AND EULER EQUATIONS ON THE CIRCLE , 2010, 1010.1832.

[18]  Joachim Escher,et al.  Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation , 2007 .

[19]  You-jin Zhang,et al.  Ja n 20 05 A 2-Component Generalization of the Camassa-Holm Equation and Its Solutions , 2005 .

[20]  P. Olver,et al.  Geodesic flow and two (super) component analog of the Camassa-Holm equation , 2006, nlin/0605041.

[21]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[22]  P. Olver,et al.  Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  P. Guha Integrable Geodesic Flows on the (Super)extension of the Bott–Virasoro Group , 2000 .

[24]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[25]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[26]  S. Lang Differential and Riemannian Manifolds , 1996 .

[27]  G. Falqui,et al.  On a Camassa-Holm type equation with two dependent variables , 2005, nlin/0505059.

[28]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[29]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.