Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models

[1]  W. Jay Evolution’s Witness: How Eyes Evolved , 2012 .

[2]  J. Hurley,et al.  CNG-modulin, The Cone Specific Modulator Of CNG Channel Activity, Is Required For The Recovery Of Flash Sensitivity Under Continuing Illumination Characteristic Of Cone Photoreceptors , 2012 .

[3]  V. Arshavsky,et al.  CNG-Modulin: A Novel Ca-Dependent Modulator of Ligand Sensitivity in Cone Photoreceptor cGMP-Gated Ion Channels , 2012, The Journal of Neuroscience.

[4]  F. I. Hárosi,et al.  Functional significance of the taper of vertebrate cone photoreceptors , 2012, The Journal of general physiology.

[5]  J. I. Korenbrot,et al.  Speed, adaptation, and stability of the response to light in cone photoreceptors: The functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels , 2012, The Journal of general physiology.

[6]  V. Gurevich,et al.  The functional cycle of visual arrestins in photoreceptor cells , 2011, Progress in Retinal and Eye Research.

[7]  W. N. Zagotta,et al.  Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels , 2011, Nature communications.

[8]  K. Koch,et al.  Differential Calcium Signaling by Cone Specific Guanylate Cyclase-Activating Proteins from the Zebrafish Retina , 2011, PloS one.

[9]  K. Yau,et al.  Activation of Visual Pigments by Light and Heat , 2011, Science.

[10]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[11]  S. Renninger,et al.  Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae , 2011, The European journal of neuroscience.

[12]  Darren E. Koenig,et al.  The absolute threshold of cone vision. , 2011, Journal of vision.

[13]  Giovanni Caruso,et al.  Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse , 2010, PLoS Comput. Biol..

[14]  D. Tranchina,et al.  Channel Modulation and the Mechanism of Light Adaptation in Mouse Rods , 2010, The Journal of Neuroscience.

[15]  R. Foster,et al.  Vertebrate ancient opsin and melanopsin: divergent irradiance detectors , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[16]  N. Artemyev,et al.  Rod phosphodiesterase-6 PDE6A and PDE6B Subunits Are Enzymatically Equivalent* , 2010, The Journal of Biological Chemistry.

[17]  S. Kawamura,et al.  Larger inhibition of visual pigment kinase in cones than in rods , 2010, Journal of neurochemistry.

[18]  C. Sung,et al.  The cell biology of vision , 2010, The Journal of cell biology.

[19]  T. M. Esdaille,et al.  Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision , 2010, The Journal of Neuroscience.

[20]  G. Fain,et al.  Replacing the rod with the cone transducin α subunit decreases sensitivity and accelerates response decay , 2010, The Journal of physiology.

[21]  M. Leroux,et al.  cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. , 2010, Trends in cell biology.

[22]  Todd H. Oakley,et al.  The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway , 2010, Proceedings of the Royal Society B: Biological Sciences.

[23]  K. Palczewski,et al.  Complexes between photoactivated rhodopsin and transducin: progress and questions. , 2010, The Biochemical journal.

[24]  C. Craft,et al.  Visual Arrestin 1 contributes to cone photoreceptor survival and light adaptation. , 2010, Investigative ophthalmology & visual science.

[25]  H. R. Matthews,et al.  Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors , 2010, The Journal of general physiology.

[26]  E. Pugh,et al.  Lessons from photoreceptors: turning off g-protein signaling in living cells. , 2010, Physiology.

[27]  Marie E Burns,et al.  Control of Rhodopsin's Active Lifetime by Arrestin-1 Expression in Mammalian Rods , 2010, The Journal of Neuroscience.

[28]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[29]  A. Menini The Neurobiology of Olfaction , 2009 .

[30]  T. Lamb,et al.  The evolution of phototransduction and eyes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  N. Artemyev,et al.  Characterization of Human Cone Phosphodiesterase-6 Ectopically Expressed in Xenopus laevis Rods* , 2009, The Journal of Biological Chemistry.

[32]  Marie E Burns,et al.  RGS9 concentration matters in rod phototransduction. , 2009, Biophysical journal.

[33]  J. Corbin,et al.  Probing the Catalytic Sites and Activation Mechanism of Photoreceptor Phosphodiesterase Using Radiolabeled Phosphodiesterase Inhibitors* , 2009, The Journal of Biological Chemistry.

[34]  S. Kawamura,et al.  High cGMP synthetic activity in carp cones , 2009, Proceedings of the National Academy of Sciences.

[35]  Gordon L. Fain,et al.  ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light , 2008, Current Biology.

[36]  Detlev Arendt,et al.  Eye Evolution: The Blurry Beginning , 2008, Current Biology.

[37]  V. Govardovskii,et al.  Kinetics of Turn-offs of Frog Rod Phototransduction Cascade , 2008, The Journal of general physiology.

[38]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[39]  T. Wensel Signal transducing membrane complexes of photoreceptor outer segments , 2008, Vision Research.

[40]  J. Besharse,et al.  Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[41]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[42]  David Holcman,et al.  The dynamics of phosphodiesterase activation in rods and cones. , 2008, Biophysical journal.

[43]  P. Detwiler,et al.  Light Adaptation in Salamander L-Cone Photoreceptors , 2008, The Journal of Neuroscience.

[44]  Vsevolod V Gurevich,et al.  Regulation of Arrestin Binding by Rhodopsin Phosphorylation Level* , 2007, Journal of Biological Chemistry.

[45]  Todd H. Oakley,et al.  Key transitions during the evolution of animal phototransduction: novelty, "tree-thinking," co-option, and co-duplication. , 2007, Integrative and comparative biology.

[46]  J. Lytton Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. , 2007, The Biochemical journal.

[47]  K. Nakatani,et al.  Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. , 2007, The Journal of general physiology.

[48]  J. Beavo,et al.  Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. , 2007, Annual review of biochemistry.

[49]  G. Fain,et al.  Simultaneous measurement of current and calcium in the ultraviolet‐sensitive cones of zebrafish , 2007, The Journal of physiology.

[50]  K. Yau,et al.  Phototransduction in mouse rods and cones , 2007, Pflügers Archiv - European Journal of Physiology.

[51]  J. I. Korenbrot,et al.  Functional Characterization and Molecular Cloning of the K+-dependent Na+/Ca2+ Exchanger in Intact Retinal Cone Photoreceptors , 2007, The Journal of general physiology.

[52]  G. Marshall,et al.  G-protein alpha and beta–gamma subunits interact with conformationally distinct signaling states of rhodopsin , 2006, Vision Research.

[53]  V. Slepak,et al.  Structural Basis for Calcium-induced Inhibition of Rhodopsin Kinase by Recoverin* , 2006, Journal of Biological Chemistry.

[54]  Y. Koutalos,et al.  Longitudinal Diffusion of a Polar Tracer in the Outer Segments of Rod Photoreceptors from Different Species† , 2006, Photochemistry and photobiology.

[55]  T. Wensel,et al.  Tokay Gecko Photoreceptors Achieve Rod-Like Physiology with Cone-Like Proteins† , 2006, Photochemistry and photobiology.

[56]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[57]  John M. Findlay,et al.  The binocular coordination of eye movements during reading in children and adults , 2006, Vision Research.

[58]  Theodore G. Wensel,et al.  RGS Expression Rate-Limits Recovery of Rod Photoresponses , 2006, Neuron.

[59]  Y. Fukada,et al.  GRK1 and GRK7: Unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones , 2006, Journal of neurochemistry.

[60]  P. Detwiler,et al.  Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses. , 2006 .

[61]  V. Govardovskii,et al.  Late stages of visual pigment photolysis in situ: Cones vs. rods , 2006, Vision Research.

[62]  Geng-Lin Li,et al.  An Ionotropic GABA Receptor with Novel Pharmacology at Bullfrog Cone Photoreceptor Terminals , 2006, Neurosignals.

[63]  Krzysztof Palczewski,et al.  G protein-coupled receptor rhodopsin. , 2006, Annual review of biochemistry.

[64]  M. Cornwall,et al.  Turning Cones Off: the Role of the 9-Methyl Group of Retinal in Red Cones , 2006, The Journal of general physiology.

[65]  V. Arshavsky,et al.  The N Terminus of GTPγS-activated Transducin α-Subunit Interacts with the C Terminus of the cGMP Phosphodiesterase γ-Subunit* , 2006, Journal of Biological Chemistry.

[66]  J. Bains,et al.  Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in Motor Learning and Memory* , 2006, Journal of Biological Chemistry.

[67]  C. Lugnier Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. , 2006, Pharmacology & therapeutics.

[68]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[69]  Todd H. Oakley,et al.  New insights into the evolutionary history of photoreceptor cells. , 2005, Trends in ecology & evolution.

[70]  T. Lamb,et al.  Extremely rapid recovery of human cone circulating current at the extinction of bleaching exposures , 2005, The Journal of physiology.

[71]  S C Nicholas,et al.  Toward a unified model of vertebrate rod phototransduction. , 2005, Visual neuroscience.

[72]  S. Kawamura,et al.  Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  T. Spady,et al.  Rod and Cone Opsin Families Differ in Spectral Tuning Domains but Not Signal Transducing Domains as Judged by Saturated Evolutionary Trace Analysis , 2005, Journal of Molecular Evolution.

[74]  O. Rinner,et al.  Knockdown of Cone-Specific Kinase GRK7 in Larval Zebrafish Leads to Impaired Cone Response Recovery and Delayed Dark Adaptation , 2005, Neuron.

[75]  A. Kaneko,et al.  GABA-mediated component in the feedback response of turtle retinal cones , 2005, Visual Neuroscience.

[76]  Xiujun Zhang,et al.  cGMP signaling in vertebrate retinal photoreceptor cells. , 2005, Frontiers in bioscience : a journal and virtual library.

[77]  J. Beavo,et al.  Molecular Determinants of cGMP Binding to Chicken Cone Photoreceptor Phosphodiesterase* , 2004, Journal of Biological Chemistry.

[78]  D. Holcman,et al.  Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure. , 2004, Biophysical journal.

[79]  J. Hurley,et al.  Visual Pigment Phosphorylation but Not Transducin Translocation Can Contribute to Light Adaptation in Zebrafish Cones , 2004, Neuron.

[80]  P. Schnetkamp The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond , 2004, Pflügers Archiv.

[81]  J. I. Korenbrot,et al.  In Intact Mammalian Photoreceptors, Ca2+-dependent Modulation of cGMP-gated Ion Channels Is Detectable in Cones but Not in Rods , 2004, The Journal of general physiology.

[82]  D. Arendt Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.

[83]  K. Yau,et al.  Role of visual pigment properties in rod and cone phototransduction , 2003, Nature.

[84]  D. Tranchina,et al.  Multiple Steps of Phosphorylation of Activated Rhodopsin Can Account for the Reproducibility of Vertebrate Rod Single-photon Responses , 2003, The Journal of general physiology.

[85]  K. Koch,et al.  Impact of N-terminal Myristoylation on the Ca2+-dependent Conformational Transition in Recoverin* , 2003, Journal of Biological Chemistry.

[86]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[87]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[88]  W. Bönigk,et al.  Assembly of retinal rod or cone Na(+)/Ca(2+)-K(+) exchanger oligomers with cGMP-gated channel subunits as probed with heterologously expressed cDNAs. , 2003, Biochemistry.

[89]  T. Wensel,et al.  GTPase Regulators and Photoresponses in Cones of the Eastern Chipmunk , 2003, The Journal of Neuroscience.

[90]  C. Craft,et al.  Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. , 2002, Molecular vision.

[91]  E. Kremmer,et al.  Subunit Stoichiometry of the CNG Channel of Rod Photoreceptors , 2002, Neuron.

[92]  M. Trudeau,et al.  Rod Cyclic Nucleotide-Gated Channels Have a Stoichiometry of Three CNGA1 Subunits and One CNGB1 Subunit , 2002, Neuron.

[93]  Osvaldo Alvarez,et al.  Counting channels: a tutorial guide on ion channel fluctuation analysis. , 2002, Advances in physiology education.

[94]  K. Yau,et al.  The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry , 2002, Nature.

[95]  C. Craft,et al.  Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors , 2002, FEBS letters.

[96]  T. Wensel,et al.  R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Alapakkam P Sampath,et al.  Molecular mechanism of spontaneous pigment activation in retinal cones. , 2002, Biophysical journal.

[98]  J. I. Korenbrot,et al.  Voltage-dependence of Ion Permeation in Cyclic GMP–gated Ion Channels Is Optimized for Cell Function in Rod and Cone Photoreceptors , 2002, The Journal of general physiology.

[99]  U. Kaupp,et al.  Cyclic nucleotide-gated ion channels. , 2002, Physiological reviews.

[100]  O. Lichtarge,et al.  Characterization of retinal guanylate cyclase‐activating protein 3 (GCAP3) from zebrafish to man , 2002, The European journal of neuroscience.

[101]  C. K. Chen,et al.  Characterization of human GRK7 as a potential cone opsin kinase. , 2001, Molecular vision.

[102]  C. Craft,et al.  Species-Specific Differences in Expression of G-Protein-Coupled Receptor Kinase (GRK) 7 and GRK1 in Mammalian Cone Photoreceptor Cells: Implications for Cone Cell Phototransduction , 2001, The Journal of Neuroscience.

[103]  R. Birge,et al.  The photobleaching sequence of a short-wavelength visual pigment. , 2001, Biochemistry.

[104]  S. Frings,et al.  Fraction of the Dark Current Carried by Ca2+ through Cgmp-Gated Ion Channels of Intact Rod and Cone Photoreceptors , 2000, The Journal of general physiology.

[105]  T. Lamb,et al.  The Role of Steady Phosphodiesterase Activity in the Kinetics and Sensitivity of the Light-Adapted Salamander Rod Photoresponse , 2000, The Journal of general physiology.

[106]  E. Kotelnikova,et al.  Time Course and Ca2+ Dependence of Sensitivity Modulation in Cyclic Gmp-Gated Currents of Intact Cone Photoreceptors , 2000, The Journal of general physiology.

[107]  W. Giles,et al.  Na(+)-Ca(2+)-K(+) currents measured in insect cells transfected with the retinal cone or rod Na(+)-Ca(2+)-K(+) exchanger cDNA. , 2000, Biophysical journal.

[108]  Marie E. Burns,et al.  Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites , 2000, Neuron.

[109]  T. Lamb,et al.  The Gain of Rod Phototransduction Reconciliation of Biochemical and Electrophysiological Measurements , 2000, Neuron.

[110]  R. Hamer,et al.  Computational analysis of vertebrate phototransduction: Combined quantitative and qualitative modeling of dark- and light-adapted responses in amphibian rods , 2000, Visual Neuroscience.

[111]  J H Parkes,et al.  Phosphorylation modulates the affinity of light-activated rhodopsin for G protein and arrestin. , 2000, Biochemistry.

[112]  Fred Rieke,et al.  Origin and Functional Impact of Dark Noise in Retinal Cones , 2000, Neuron.

[113]  A. Dizhoor,et al.  Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. , 1999, Methods.

[114]  P. Detwiler,et al.  Longitudinal spread of second messenger signals in isolated rod outer segments of lizards , 1999, The Journal of physiology.

[115]  V. Torre,et al.  Cyclic Nucleotide–Gated Channels , 1999, The Journal of general physiology.

[116]  R. Birge,et al.  Photochemistry of the primary event in short-wavelength visual opsins at low temperature. , 1999, Biochemistry.

[117]  M. D'Amours,et al.  Regulation of photoreceptor phosphodiesterase catalysis by its non-catalytic cGMP-binding sites. , 1999, The Biochemical journal.

[118]  T. Lamb,et al.  Variability in the Time Course of Single Photon Responses from Toad Rods Termination of Rhodopsin’s Activity , 1999, Neuron.

[119]  Y. Imanishi,et al.  Three kinds of guanylate cyclase expressed in medaka photoreceptor cells in both retina and pineal organ. , 1999, Biochemical and biophysical research communications.

[120]  J. L. Schnapf,et al.  The Photovoltage of Macaque Cone Photoreceptors: Adaptation, Noise, and Kinetics , 1999, The Journal of Neuroscience.

[121]  G. Fain,et al.  Light-dependent Changes in Outer Segment Free-Ca2+ Concentration in Salamander Cone Photoreceptors , 1999, The Journal of general physiology.

[122]  Stephan Frings,et al.  Ca2+ permeation in cyclic nucleotide‐gated channels , 1999, The EMBO journal.

[123]  J. I. Korenbrot,et al.  In Intact Cone Photoreceptors, a Ca2+-dependent, Diffusible Factor Modulates the cGMP-gated Ion Channels Differently than in Rods , 1998, The Journal of general physiology.

[124]  D. Baylor,et al.  Origin of reproducibility in the responses of retinal rods to single photons. , 1998, Biophysical journal.

[125]  R. Normann,et al.  Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors , 1998, Progress in Retinal and Eye Research.

[126]  J. Hurley,et al.  Rhodopsin phosphorylation and its role in photoreceptor function , 1998, Vision Research.

[127]  D. Baylor,et al.  Control of rhodopsin activity in vision , 1998, Eye.

[128]  Y. Imanishi,et al.  A novel subtype of G‐protein‐coupled receptor kinase, GRK7, in teleost cone photoreceptors , 1998, FEBS letters.

[129]  N. Engheta,et al.  Kinetics of Recovery of the Dark-adapted Salamander Rod Photoresponse , 1998, The Journal of general physiology.

[130]  S. Kawamura,et al.  Molecular mechanism of S-modulin action: binding target and effect of ATP. , 1997, Journal of biochemistry.

[131]  W. G. Owen,et al.  Linear transduction of natural stimuli by dark‐adapted and light‐adapted rods of the salamander, Ambystoma tigrinum , 1997, The Journal of physiology.

[132]  D. Hackos,et al.  Calcium Modulation of Ligand Affinity in the Cyclic GMP–gated Ion Channels of Cone Photoreceptors , 1997, The Journal of general physiology.

[133]  Y. Shichida,et al.  Photochemical and biochemical properties of chicken blue-sensitive cone visual pigment. , 1997, Biochemistry.

[134]  E. Pugh,et al.  Photoreceptor Guanylate Cyclases: A Review , 1997, Bioscience reports.

[135]  V. Torre,et al.  Single-channel properties of ionic channels gated by cyclic nucleotides. , 1997, Biophysical journal.

[136]  L. Lagnado,et al.  The action of cytoplasmic calcium on the cGMP‐activated channel in salamander rod photoreceptors. , 1996, The Journal of physiology.

[137]  D. Baylor,et al.  Molecular origin of continuous dark noise in rod photoreceptors. , 1996, Biophysical journal.

[138]  F. Tokunaga,et al.  Photoreceptor Protein s26, a Cone Homologue of S-modulin in Frog Retina* , 1996, The Journal of Biological Chemistry.

[139]  P. Bauer Cyclic GMP‐gated channels of bovine rod photoreceptors: affinity, density and stoichiometry of Ca(2+)‐calmodulin binding sites. , 1996, The Journal of physiology.

[140]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[141]  Y. Koutalos,et al.  Characterization of guanylate cyclase activity in single retinal rod outer segments , 1995, The Journal of general physiology.

[142]  C W Tyler,et al.  Phototransduction: Modeling the primate cone flash response , 1995, Visual Neuroscience.

[143]  Y. Koutalos,et al.  The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods , 1995, The Journal of general physiology.

[144]  A. Dizhoor,et al.  Cloning, Sequencing, and Expression of a 24-kDa Ca2+-binding Protein Activating Photoreceptor Guanylyl Cyclase (*) , 1995, The Journal of Biological Chemistry.

[145]  L. Haynes Permeation and block by internal and external divalent cations of the catfish cone photoreceptor cGMP-gated channel , 1995, The Journal of general physiology.

[146]  Y. Shichida,et al.  Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. , 1995, Biochemistry.

[147]  A. Zimmerman,et al.  Modulation of the cGMP‐gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor. , 1995, The Journal of physiology.

[148]  J. I. Korenbrot,et al.  Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors. , 1995, Biophysical journal.

[149]  Stephan Frings,et al.  Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels , 1995, Neuron.

[150]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. , 1995, Nature.

[151]  Y. Koutalos,et al.  Ca2+ modulation of the cGMP‐gated channel of bullfrog retinal rod photoreceptors. , 1995, The Journal of physiology.

[152]  David J. Baylor,et al.  Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant , 1995, Science.

[153]  Y. Hsu,et al.  Interaction of calmodulin with the cyclic GMP-gated channel of rod photoreceptor cells. Modulation of activity, affinity purification, and localization. , 1994, The Journal of biological chemistry.

[154]  J. Miller,et al.  Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells , 1994, The Journal of general physiology.

[155]  W. G. Owen,et al.  Free calcium concentrations in bullfrog rods determined in the presence of multiple forms of Fura-2. , 1994, Biophysical journal.

[156]  P. Detwiler,et al.  The calcium feedback signal in the phototransduction cascade of vertebrate rods , 1994, Neuron.

[157]  D. Bers,et al.  Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. , 1994, Biophysical journal.

[158]  I. I. Senin,et al.  Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells , 1994, FEBS letters.

[159]  P B Sigler,et al.  The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. , 1994, Nature.

[160]  E. Pugh,et al.  Rod outer segment structure influences the apparent kinetic parameters of cyclic GMP phosphodiesterase , 1994, The Journal of general physiology.

[161]  A. Dizhoor,et al.  The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator , 1994, Neuron.

[162]  T. Yoshizawa,et al.  Molecular basis for color vision. , 1994, Biophysical chemistry.

[163]  D. A. Burkhardt,et al.  Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  F. Müller,et al.  A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[165]  J. I. Korenbrot,et al.  Analysis of fluctuations in the cGMP-dependent currents of cone photoreceptor outer segments. , 1994, Biophysical journal.

[166]  M. Straforini,et al.  Gating, selectivity and blockage of single channels activated by cyclic GMP in retinal rods of the tiger salamander. , 1994, The Journal of physiology.

[167]  Heidi E. Hamm,et al.  The 2.2 Å crystal structure of transducin-α complexed with GTPγS , 1993, Nature.

[168]  Lubert Stryer,et al.  Three-dimensional structure of recoverin, a calcium sensor in vision , 1993, Cell.

[169]  E. MacNichol,et al.  Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation , 1993, The Journal of general physiology.

[170]  J. Miller,et al.  Phototransduction and adaptation in rods, single cones, and twin cones of the striped bass retina: A comparative study , 1993, Visual Neuroscience.

[171]  P. Mcnaughton,et al.  The mechanism of ion transport by the Na(+)‐Ca2+,K+ exchange in rods isolated from the salamander retina. , 1993, The Journal of physiology.

[172]  J. Miller,et al.  In retinal cones, membrane depolarization in darkness activates the cGMP-dependent conductance. A model of Ca homeostasis and the regulation of guanylate cyclase , 1993, The Journal of general physiology.

[173]  J. L. Schnapf,et al.  Visual transduction in human rod photoreceptors. , 1993, The Journal of physiology.

[174]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[175]  J. Tanaka,et al.  Divalent effects on cGMP-activated currents in excised patches from amphibian photoreceptors , 1993, The Journal of Membrane Biology.

[176]  J. I. Korenbrot,et al.  Permeation and interaction of monovalent cations with the cGMP-gated channel of cone photoreceptors , 1992, The Journal of general physiology.

[177]  P. Mcnaughton,et al.  Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. , 1992, The Journal of physiology.

[178]  D. Baylor,et al.  Cation interactions within the cyclic GMP‐activated channel of retinal rods from the tiger salamander. , 1992, The Journal of physiology.

[179]  D. Baylor,et al.  Cyclic GMP‐activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. , 1992, The Journal of physiology.

[180]  J. Jin,et al.  Light-dependent delay in the falling phase of the retinal rod photoresponse , 1992, Visual Neuroscience.

[181]  L. Lagnado,et al.  Net charge transport during sodium-dependent calcium extrusion in isolated salamander rod outer segments , 1991, The Journal of General Physiology.

[182]  V. Torre,et al.  Blockage and permeation of divalent cations through the cyclic GMP‐activated channel from tiger salamander retinal rods. , 1991, The Journal of physiology.

[183]  D. Tranchina,et al.  Light adaptation in turtle cones. Testing and analysis of a model for phototransduction. , 1991, Biophysical journal.

[184]  K. Koch,et al.  A 26 kd calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. , 1991, The EMBO journal.

[185]  K. Yau,et al.  Light Adaptation in Retinal Rods of the Rabbit and Two Other Nonprimate Mammals Nakatani Et Al. Light Adaptation M Rabbit and Other Mammalian Rods Experiments on Cattle and Rat , 1991 .

[186]  P. Mcnaughton,et al.  Response properties of cones from the retina of the tiger salamander. , 1991, The Journal of physiology.

[187]  P. Schnetkamp,et al.  Unidirectional Na+, Ca2+, and K+ fluxes through the bovine rod outer segment Na-Ca-K exchanger. , 1991, The Journal of biological chemistry.

[188]  A. V. Maricq,et al.  Inward rectification in the inner segment of single retinal cone photoreceptors. , 1990, Journal of neurophysiology.

[189]  A. V. Maricq,et al.  Potassium currents in the inner segment of single retinal cone photoreceptors. , 1990, Journal of neurophysiology.

[190]  D. Cameron,et al.  The magnitude, time course and spatial distribution of current induced in salamander rods by cyclic guanine nucleotides. , 1990, Journal of Physiology.

[191]  K. Yau,et al.  Single‐channel measurement from the cyclic GMP‐activated conductance of catfish retinal cones. , 1990, The Journal of physiology.

[192]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[193]  S. Hestrin,et al.  Activation kinetics of retinal cones and rods: response to intense flashes of light , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[194]  Donald L. Miller,et al.  Cytoplasmic free calcium concentration in dark-adapted retinal rod outer segments , 1989, Vision Research.

[195]  V. Torre,et al.  Kinetics of phototransduction in retinal rods of the newt Triturus cristatus. , 1989, The Journal of physiology.

[196]  B. Hille,et al.  Ionic channels of the inner segment of tiger salamander cone photoreceptors , 1989, The Journal of general physiology.

[197]  T. Lamb,et al.  Cytoplasmic calcium as the messenger for light adaptation in salamander rods. , 1989, The Journal of physiology.

[198]  C. Lerea,et al.  α transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina , 1989, Neuron.

[199]  K. Yau,et al.  Light adaptation in cat retinal rods. , 1989, Science.

[200]  U. Kaupp,et al.  The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. , 1989, The Journal of biological chemistry.

[201]  L. Lagnado,et al.  Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients , 1989, Nature.

[202]  K. Yau,et al.  Sodium‐dependent calcium extrusion and sensitivity regulation in retinal cones of the salamander. , 1989, The Journal of physiology.

[203]  A. Hodgkin,et al.  Control of light‐sensitive current in salamander rods. , 1988, The Journal of physiology.

[204]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[205]  A. V. Maricq,et al.  Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors , 1988, Neuron.

[206]  L. Stryer,et al.  Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions , 1988, Nature.

[207]  K. Yau,et al.  Calcium and light adaptation in retinal rods and cones , 1988, Nature.

[208]  J. Beavo,et al.  Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. , 1988, The Journal of biological chemistry.

[209]  D. A. Burkhardt,et al.  Light adaptation and responses to contrast flashes in cones of the walleye retina , 1987, Vision Research.

[210]  W. Cobbs,et al.  Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum. , 1987, The Journal of physiology.

[211]  S. Hestrin,et al.  Effects of cyclic GMP on the kinetics of the photocurrent in rods and in detached rod outer segments , 1987, The Journal of general physiology.

[212]  S. Hestrin,et al.  The properties and function of inward rectification in rod photoreceptors of the tiger salamander. , 1987, The Journal of physiology.

[213]  J. I. Korenbrot,et al.  Kinetics of light-dependent Ca fluxes across the plasma membrane of rod outer segments. A dynamic model of the regulation of the cytoplasmic Ca concentration , 1987, The Journal of general physiology.

[214]  R. Fetter,et al.  Morphological components associated with frog cone outer segment disc margins. , 1987, Investigative ophthalmology & visual science.

[215]  G. Matthews Spread of the light response along the rod outer segment: An estimate from patch-clamp recordings , 1986, Vision Research.

[216]  A. Ames,et al.  Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. , 1986, The Journal of biological chemistry.

[217]  D. E. Somers,et al.  Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. , 1986, Science.

[218]  K. Yau,et al.  Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane , 1986, Nature.

[219]  D. Baylor,et al.  Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores , 1986, Nature.

[220]  D. Baylor,et al.  Electrical properties of the light‐sensitive conductance of rods of the salamander Ambystoma tigrinum. , 1986, The Journal of physiology.

[221]  K. Yau,et al.  Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment , 1985, Nature.

[222]  K. Yau,et al.  Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment , 1985, Nature.

[223]  E. E. Fesenko,et al.  Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment , 1985, Nature.

[224]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[225]  E. A. Schwartz,et al.  The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. , 1984, The Journal of physiology.

[226]  J E Gander,et al.  Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide alpha-phosphoryls corresponds with intensity of photic stimulation. , 1983, The Journal of biological chemistry.

[227]  D. Baylor,et al.  Temperature effects on the membrane current of retinal rods of the toad. , 1983, The Journal of physiology.

[228]  R. Lolley,et al.  Calcium modulation of cyclic GMP synthesis in rat visual cells , 1982, Vision Research.

[229]  D Bertrand,et al.  Voltage‐activated and calcium‐activated currents studied in solitary rod inner segments from the salamander retina , 1982, The Journal of physiology.

[230]  P. Mcnaughton,et al.  Spatial spread of activation and background desensitization in toad rod outer segments , 1981, The Journal of physiology.

[231]  D. Baylor,et al.  Two components of electrical dark noise in toad retinal rod outer segments. , 1980, The Journal of physiology.

[232]  D. Baylor,et al.  Current fluctuations across single rod outer segments , 1979, Vision Research.

[233]  D. Baylor,et al.  Thermal activation of the visual transduction mechanism in retinal rods , 1979, Nature.

[234]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[235]  D. Baylor,et al.  The membrane current of single rod outer segments , 1979, Vision Research.

[236]  A. Hodgkin,et al.  Detection and resolution of visual stimuli by turtle photoreceptors , 1973, The Journal of physiology.

[237]  E. A. Schwartz,et al.  Responses of single rods in the retina of the turtle , 1973, The Journal of physiology.

[238]  T. Tomita Genesis of photoreceptor potential. , 1971, Vision research.

[239]  W. A. Hagins,et al.  Dark current and photocurrent in retinal rods. , 1970, Biophysical journal.

[240]  D. Baylor,et al.  Electrical responses of single cones in the retina of the turtle , 1970, The Journal of physiology.

[241]  P Bisegna,et al.  Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters. , 2010, IET systems biology.

[242]  A. Dizhoor,et al.  Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase , 2009, Molecular and Cellular Biochemistry.

[243]  T. Morizumi,et al.  Mechanism of G‐protein Activation by Rhodopsin † , 2007, Photochemistry and photobiology.

[244]  V. Arshavsky,et al.  The N terminus of GTP gamma S-activated transducin alpha-subunit interacts with the C terminus of the cGMP phosphodiesterase gamma-subunit. , 2006, Journal of Biological Chemistry.

[245]  D. Holcman,et al.  The Limit of Photoreceptor Sensitivity: Molecular Mechanisms of Dark Noise in Retinal Cones , 2005 .

[246]  C. K. Chen The vertebrate phototransduction cascade: amplification and termination mechanisms. , 2005, Reviews of physiology, biochemistry and pharmacology.

[247]  K. Koch,et al.  Photoreceptor specific guanylate cyclases in vertebrate phototransduction , 2004, Molecular and Cellular Biochemistry.

[248]  J. I. Korenbrot,et al.  Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. , 2002, Advances in experimental medicine and biology.

[249]  P. Bauer The complex of cGMP-gated channel and Na+/Ca2+, K+ exchanger in rod photoreceptors. , 2002, Advances in experimental medicine and biology.

[250]  S. Kawamura Calcium-dependent regulation of rhodopsin phosphorylation. , 1999, Novartis Foundation symposium.

[251]  G. Wells,et al.  Ion selectivity predictions from a two-site permeation model for the cyclic nucleotide-gated channel of retinal rod cells. , 1997, Biophysical journal.

[252]  W. G. Owen,et al.  Light-dependent control of calcium in intact rods of the bullfrog Rana catesbeiana. , 1996, Journal of neurophysiology.

[253]  H. Hamm,et al.  Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. , 1996, Nature.

[254]  M. Campani,et al.  Model of phototransduction in retinal rods. , 1990, Cold Spring Harbor symposia on quantitative biology.

[255]  H R Matthews,et al.  Light adaptation in cone photoreceptors of the salamander: a role for cytoplasmic calcium. , 1990, The Journal of physiology.

[256]  D. Baylor,et al.  Cyclic GMP-activated conductance of retinal photoreceptor cells. , 1989, Annual review of neuroscience.

[257]  D. Tranchina,et al.  Phototransduction in cones: An inverse problem in enzyme kinetics , 1989, Bulletin of mathematical biology.

[258]  G. Matthews,et al.  Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[259]  T. Lamb Effects of temperature changes on toad rod photocurrents. , 1984, The Journal of physiology.

[260]  S. Hemilä,et al.  Longitudinal spread of adaptation in the rods of the frog's retina. , 1981, The Journal of physiology.

[261]  B. Borwein The Retinal Receptor: A Description , 1981 .

[262]  R. Normann,et al.  The effects of background illumination on the photoresponses of red and green cones. , 1979, The Journal of physiology.

[263]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .