On the freeze quantifier in constraint LTL: decidability and complexity

Constraint LTL, a generalization of LTL over Presburger constraints, is often used as a formal language to specify the behavior of operational models with constraints. The freeze quantifier can be part of the language, as in some real-time logics, but this variable-binding mechanism is quite general and ubiquitous in many logical languages (first-order temporal logics, hybrid logics, logics for sequence diagrams, navigation logics, etc.). We show that Constraint LTL over the simple domain augmented with the freeze operator is undecidable which is a surprising result regarding the poor language for constraints (only equality tests). Many versions of freeze-free constraint LTL are decidable over domains with qualitative predicates and our undecidability result actually establishes /spl Sigma//sub 1//sup 1/ -completeness. On the positive side, we provide complexity results when the domain is finite (EXPSPACE-completeness) or when the formulae are flat in a sense introduced in the paper.

[1]  Maarten Marx,et al.  A Road-Map on Complexity for Hybrid Logics , 1999, CSL.

[2]  Philippe Schnoebelen,et al.  Temporal logic with forgettable past , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[3]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[4]  Amir Pnueli,et al.  Explicit clock temporal logic , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[5]  Stéphane Demri,et al.  On the Freeze Quantifier in Constraint LTL: Decidability and Complexity , 2005, TIME.

[6]  Frank S. de Boer,et al.  Decidable Navigation Logics for Object Structures , 2001, CSL.

[7]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[8]  Melvin Fitting,et al.  Modal Logics Between Propositional and First-order , 2002, J. Log. Comput..

[9]  Alain Finkel,et al.  How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.

[10]  Emanuel Kieronski EXPSPACE-Complete Variant of Guarded Fragment with Transitivity , 2002, STACS.

[11]  Frank Wolter,et al.  Axiomatizing the monodic fragment of first-order temporal logic , 2002, Ann. Pure Appl. Log..

[12]  Véronique Cortier,et al.  Flatness Is Not a Weakness , 2000, CSL.

[13]  Carsten Lutz NEXPTIME-Complete Description Logics with Concrete Domains , 2001, IJCAR.

[14]  Patricia Bouyer,et al.  A logical characterization of data languages , 2002, Inf. Process. Lett..

[15]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[16]  Valentin Goranko,et al.  Hierarchies of modal and temporal logics with reference pointers , 1996, J. Log. Lang. Inf..

[17]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[18]  Bart Kuijpers,et al.  Introduction to constraint databases , 2002, SGMD.

[19]  Frank Wolter,et al.  On the Computational Complexity of Spatio-Temporal Logics , 2003, FLAIRS.

[20]  Igor Potapov,et al.  Temporal logic with predicate abstraction , 2004 .

[21]  Thomas Schwentick,et al.  Two-Variable Logic on Words with Data , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[22]  Tim French Quantified propositional temporal logic with repeating states , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[23]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[24]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[25]  Michael Fisher,et al.  Equality and Monodic First-Order Temporal Logic , 2002, Stud Logica.

[26]  Pierre Wolper,et al.  Representing Arithmetic Constraints with Finite Automata: An Overview , 2002, ICLP.

[27]  M. de Rijke,et al.  Hybrid logics on linear structures: expressivity and complexity , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[28]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[29]  Doo-Hwan Bae,et al.  A semantics of sequence diagrams , 2002, Inf. Process. Lett..

[30]  Thomas A. Henzinger,et al.  Half-order modal logic: how to prove real-time properties , 1990, PODC '90.

[31]  Véronique Bruyère,et al.  Model-Checking for Weighted Timed Automata , 2004, FORMATS/FTRTFT.

[32]  Dennis Dams Flat Fragments of CTL and CTL*: Separating the Expressive and Distinguishing Powers , 1999, Log. J. IGPL.

[33]  Deepak D'Souza,et al.  An automata-theoretic approach to constraint LTL , 2002, Inf. Comput..

[34]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[35]  Jean-François Condotta,et al.  Computational Complexity of Propositional Linear Temporal Logics Based on Qualitative Spatial or Temporal Reasoning , 2002, FroCoS.

[36]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[37]  Thomas Schwentick,et al.  Finite state machines for strings over infinite alphabets , 2004, TOCL.

[38]  Frank Wolter,et al.  On the computational complexity of decidable fragments of first-order linear temporal logics , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[39]  Frank Wolter,et al.  Decidable fragment of first-order temporal logics , 2000, Ann. Pure Appl. Log..

[40]  Balder ten Cate,et al.  On the Complexity of Hybrid Logics with Binders , 2005, CSL.

[41]  A. Bouajjani,et al.  On the verification problem of nonregular properties for nonregular processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[42]  Frank Wolter,et al.  Spatio-temporal representation and reasoning based on RCC-8 , 2000, International Conference on Principles of Knowledge Representation and Reasoning.

[43]  Stéphane Demri,et al.  LTL over integer periodicity constraints , 2006, Theor. Comput. Sci..

[44]  Patricia Bouyer,et al.  An algebraic approach to data languages and timed languages , 2003, Inf. Comput..

[45]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[46]  Philippe Schnoebelen,et al.  The Complexity of Temporal Logic Model Checking , 2002, Advances in Modal Logic.