Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

Lara E Sucheston-Campbell | Simon G. Coetzee | Lara E. Sucheston-Campbell | A. Whittemore | W. Chung | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Nussbaum | C. Weinberg | R. Vierkant | T. Sellers | D. Steinemann | A. Hein | F. Couch | J. Chang-Claude | S. Chanock | B. Fridley | E. Goode | B. Bonanni | D. Hunter | O. Olopade | S. Gruber | A. Tinker | J. Hung | Y. Chiew | A. deFazio | B. Karlan | A. Wolk | J. Benítez | N. Le | A. Berchuck | E. Iversen | R. Eeles | G. Giles | G. Severi | C. Haiman | E. John | A. Spurdle | T. Dörk | W. Foulkes | M. Southey | D. Easton | G. Rennert | Xifeng Wu | A. Richardson | D. Huntsman | D. Lambrechts | C. Amos | E. Khusnutdinova | M. Greene | K. Offit | A. Antoniou | L. Le Marchand | M. Köbel | J. Brenton | J. McAlpine | A. Brooks-Wilson | Å. Borg | D. Levine | N. Orr | S. Buys | K. Doheny | M. Gore | L. Wilkens | P. Hillemanns | A. Ziogas | H. Anton-Culver | R. Glasspool | U. Menon | A. Gentry-Maharaj | K. Aben | R. Barkardottir | D. Eccles | D. Evans | G. Chenevix-Trench | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | R. Milne | U. Hamann | J. Beesley | C. Lázaro | K. Nathanson | S. Orsulic | J. Cunningham | M. Goodman | S. Kjaer | P. Peeters | J. Garber | M. Blok | A. Trichopoulou | Sung-Won Kim | C. Isaacs | J. Dennis | E. Dicks | Andrew Lee | H. Meijers-Heijboer | A. Meindl | R. Schmutzler | C. Luccarini | A. Rudolph | I. Andrulis | G. Glendon | A. Mulligan | M. Hooning | A. Ekici | A. Swerdlow | P. Radice | P. Peterlongo | S. Manoukian | A. Jakubowska | N. Antonenkova | A. Toland | F. Fostira | A. Wu | S. Teo | J. Simard | P. Pharoah | J. Tyrer | M. Schoemaker | S. Neuhausen | M. Bermisheva | D. Prokofyeva | C. Sutter | T. Park-Simon | U. Eilber | S. Wang-gohrke | J. Vijai | M. Robson | D. Yannoukakos | A. Monteiro | S. Gayther | L. McGuffog | D. Cramer | M. Birrer | F. Dao | A. Godwin | J. Brunet | E. Friedman | N. Tung | D. J. Van Den Berg | E. Imyanitov | P. Ganz | N. Wentzensen | A. Piskorz | M. Bernardini | I. Vergote | A. Osorio | R. Sutphen | R. Ness | P. Hulick | S. Tognazzo | B. Wappenschmidt | I. McNeish | Z. Stadler | J. Taylor | D. Palli | Jane M. Romm | S. Domchek | D. Stoppa-Lyonnet | Ailith Pirie | D. V. Edwards | Sue-Kyung Park | M. Porteous | H. Risch | D. Frost | S. Mazoyer | F. Hogervorst | C. Engel | C. Singer | C. Szabo | K. Claes | L. Kelemen | S. Narod | J. Rantala | N. Onland-Moret | B. Arun | U. Jensen | K. Odunsi | K. Eng | F. Damiola | I. Campbell | L. Ottini | I. Runnebaum | O. Díez | Jong Won Lee | G. Aravantinos | J. Doherty | J. Schildkraut | P. Pujol | S. Hodgson | K. Moysich | F. Modugno | B. Poppe | L. Side | E. Hahnen | B. Dworniczak | Susana Banerjee | G. Chornokur | K. Lu | B. Buecher | A. Gerdes | J. McLaughlin | H. Salvesen | L. Massuger | P. James | B. Arver | M. Daly | A. Bradbury | R. B. van der Luijt | G. Fountzilas | A. V. van Altena | D. Goldgar | H. Sobol | R. Fortner | K. Kuchenbaecker | M. Hildebrandt | C. Pearce | L. Senter | E. Pugh | J. Flanagan | M. Thomassen | R. Butzow | C. Rodríguez-Antona | K. Lawrenson | Hannah P. Yang | M. Carney | B. Ejlertsen | D. Sandler | J. Lester | A. Karnezis | D. Hazelett | R. Travis | M. Teixeira | V. McGuire | A. Bojesen | L. Lipworth | J. Balmaña | J. Weitzel | M. Tischkowitz | J. Chiquette | K. Kast | K. Rhiem | P. Broberg | H. Harris | J. Rothstein | W. Sieh | R. Kopperud | C. Walsh | M. Rossing | V. Setiawan | B. Peissel | C. Kennedy | Michael E. Jones | A. H. van der Hout | S. Winham | Honglin Song | C. Phelan | P. Webb | A. Jensen | N. Håkansson | L. Cook | T. Huzarski | J. Gronwald | M. Rookus | F. Lesueur | N. Siddiqui | M. Moffitt | C. Aalfs | S. Tworoger | T. Kruse | L. Izatt | L. Dossus | M. Merritt | H. Olsson | E. Oláh | C. Brewer | R. Davidson | A. Henderson | E. Høgdall | C. Høgdall | C. Bodelón | C. Olswold | P. Soucy | D. Barrowdale | M. Piedmonte | T. V. Hansen | M. Montagna | T. Caldés | E. J. van Rensburg | S. Ramus | M. Caligo | R. Janavicius | A. Kwong | J. Wijnen | S. Ellis | J. Adlard | J. Cook | C. Delnatte | D. Leroux | F. Prieur | L. Papi | N. Arnold | A. Gehrig | D. Niederacher | R. Varon‐Mateeva | G. Rodriguez | G. Pfeiler | M. Tea | Y. Laitman | I. Pedersen | Y. Ding | M. Pujana | P. Mai | M. Durán | C. M. Dorfling | Salina B. Chan | L. Tihomirova | T. Friebel | L. Bjørge | S. Ferguson | N. Larranaga | Johanna I. Kiiski | J. Lilyquist | A. Vega | K. Phillips | A. Beeghly-Fadiel | S. Kar | Xiao Qing Chen | M. Adams | Mingajeva Elvira | P. Harrington | P. Sharma | J. Azzollini | K. Ong | L. Walker | A. Mensenkamp | G. Leslie | J. Paul | Y. Tan | D. Thull | A. Black | T. Pejović | A. Dansonka-Mieszkowska | J. Kupryjańczyk | A. Izquierdo | L. Pelttari | P. Thompson | F. Bruinsma | Yukie T. Bean | M. Dürst | S. Lele | A. Leminen | Dong Liang | L. Lundvall | E. Poole | K. Terry | S. Johnatty | M. Larson | J. Moes-Sosnowska | Janet M. Lee | M. J. García | D. O’Malley | G. Sukiennicki | E. Van Nieuwenhuysen | L. Nedergaard | Marjorie J. Riggan | Madalene Earp | P. Lyra | J. Lecarpentier | L. Barjhoux | K. Blankstein | R. Cannioto | T. Cescon | Thomas Conner | A. D’Aloisio | Sakaeva Dina Damirovna | Todd E. Edwards | S. Ferrer | Z. Fogarty | V. García-Barberán | T. Goranova | J. Hauke | Helene Holland | K. Hosking | Ruea-Yea Huang | Mats Jernetz | P. Kannisto | C. Liebrich | Jan Lubinński | G. Mendoza-Fandino | T. May | G. Mitchell | Jacob Musinsky | A. Peixoto | J. Permuth | L. Pezzani | S. Poblete | T. Pócza | C. Rappaport‐Fuerhauser | Patricia Rice | T. Shelford | L. Sucheston-Campbell | L. Szafron | L. Thomsen | A. Tone | B. Trabert | M. Van Heetvelde | A. Vanderstichele | A. Vratimos | D. Wand | M. Woo | K. Zorn | Sandra Fert Ferrer | Paulo C Lyra | Michael E. Jones | S. Banerjee | A. Lee | Goska Leslie | R. Huang | C. Rappaport-Fuerhauser | Marjorie J Riggan | J. Kiiski | T. Pejovic | Jong Won Lee | Priyanka Sharma | Thomas A. Conner | Todd Edwards

[1]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[2]  A. Whittemore,et al.  Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus , 2016, Nature Communications.

[3]  Peter Kraft,et al.  Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. , 2016, Cancer discovery.

[4]  James E. Dinulos,et al.  FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data , 2016, BMC Bioinformatics.

[5]  Yurii B. Shvetsov,et al.  Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. , 2015, Carcinogenesis.

[6]  Z. Szallasi,et al.  CAUSEL: An epigenome and genome editing pipeline for establishing function of non-coding GWAS variants , 2015, Nature Medicine.

[7]  Simon G. Coetzee,et al.  motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites , 2015, Bioinform..

[8]  A. Whittemore,et al.  Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. , 2015, Human molecular genetics.

[9]  C. Wijmenga,et al.  Population-specific genotype imputations using minimac or IMPUTE2 , 2015, Nature Protocols.

[10]  Simon G. Coetzee,et al.  Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. , 2015, Human molecular genetics.

[11]  Yurii B. Shvetsov,et al.  Genome-wide significant risk associations for mucinous ovarian carcinoma , 2015, Nature Genetics.

[12]  D. Easton,et al.  A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects , 2015, Journal of Medical Genetics.

[13]  J. Brenton,et al.  Molecular pathogenesis of ovarian clear cell carcinoma. , 2015, Future oncology.

[14]  B. Kong,et al.  Tubal origin of ovarian endometriosis and clear cell and endometrioid carcinoma. , 2015, American journal of cancer research.

[15]  Yurii B. Shvetsov,et al.  Identification of six new susceptibility loci for invasive epithelial ovarian cancer , 2015, Nature Genetics.

[16]  A. Spurdle,et al.  Most common 'sporadic' cancers have a significant germline genetic component. , 2014, Human molecular genetics.

[17]  I. Hedenfalk,et al.  Molecular Subtyping of Serous Ovarian Tumors Reveals Multiple Connections to Intrinsic Breast Cancer Subtypes , 2014, PloS one.

[18]  Jubilee Brown,et al.  Mucinous Tumors of the Ovary: Current Thoughts on Diagnosis and Management , 2014, Current Oncology Reports.

[19]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[20]  D. Easton,et al.  Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants , 2013, Journal of Medical Genetics.

[21]  Sebastian M. Armasu,et al.  Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer , 2013, Nature Communications.

[22]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[23]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[24]  A. Whittemore,et al.  Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31 , 2013, Nature Communications.

[25]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[26]  D. Altshuler,et al.  Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk , 2013, PLoS genetics.

[27]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[28]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[29]  Russell Vang,et al.  Fallopian tube precursors of ovarian low‐ and high‐grade serous neoplasms , 2013, Histopathology.

[30]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[31]  A. Malpica,et al.  Ovarian low-grade serous carcinoma: a comprehensive update. , 2012, Gynecologic oncology.

[32]  D. Easton,et al.  Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High‐Risk Mutations , 2012, Genetic epidemiology.

[33]  P. Deloukas,et al.  Patterns of Cis Regulatory Variation in Diverse Human Populations , 2012, PLoS genetics.

[34]  J. Prat Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features , 2012, Virchows Archiv.

[35]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[36]  I. Shih,et al.  Papillary Tubal Hyperplasia: The Putative Precursor of Ovarian Atypical Proliferative (Borderline) Serous Tumors, Noninvasive Implants, and Endosalpingiosis , 2011, The American journal of surgical pathology.

[37]  I. Shih,et al.  Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma , 2011, Modern Pathology.

[38]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[39]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[40]  Christiana Kartsonaki,et al.  A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population , 2010, Nature Genetics.

[41]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[42]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[43]  James B. Brown,et al.  An overview of recent developments in genomics and associated statistical methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[45]  J. Qin,et al.  OB Fold-containing Protein 1 (OBFC1), a Human Homolog of Yeast Stn1, Associates with TPP1 and Is Implicated in Telomere Length Regulation* , 2009, The Journal of Biological Chemistry.

[46]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[47]  Jean-François Zagury,et al.  Shape-IT: new rapid and accurate algorithm for haplotype inference , 2008, BMC Bioinformatics.

[48]  E. Halperin,et al.  Estimating Local Ancestry in Admixed Populations , 2022 .

[49]  Wen-Lin Kuo,et al.  Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer , 2007, Clinical Cancer Research.

[50]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.