On demand triggering of edge localized instabilities using external nonaxisymmetric magnetic perturbations in toroidal plasmas.

The application of nonaxisymmetric magnetic fields is shown to destabilize edge-localized modes (ELMs) during otherwise ELM-free periods of discharges in the National Spherical Torus Experiment (NSTX). Profile analysis shows the applied fields increased the temperature and pressure gradients, decreasing edge stability. This robust effect was exploited for a new form of ELM control: the triggering of ELMs at will in high performance H mode plasmas enabled by lithium conditioning, yielding high time-averaged energy confinement with reduced core impurity density and radiated power.

[1]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[2]  L. Zakharov,et al.  Transition to ELM-free improved H-mode by lithium deposition on NSTX graphite divertor surfaces , 2009 .

[3]  J. S. deGrassie,et al.  RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities , 2008 .

[4]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[5]  H. Zohm Edge localized modes (ELMs) , 1996 .

[6]  M E Fenstermacher,et al.  Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. , 2004, Physical review letters.

[7]  A. Hubbard,et al.  Studies of EDA H-Mode in Alcator C-Mod , 2000 .

[8]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[9]  J. Manickam,et al.  ELM destabilization by externally applied non-axisymmetric magnetic perturbations in NSTX , 2010 .

[10]  A. Hyatt,et al.  Effects of ergodization on plasma confinement in JFT-2M , 1992 .

[11]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[12]  N Hawkes,et al.  Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak. , 2007, Physical review letters.

[13]  T. Osborne,et al.  Suppression of type-I ELMs using a single toroidal row of magnetic field perturbation coils in DIII-D , 2008 .

[14]  T. Osborne,et al.  Edge stability of stationary ELM-suppressed regimes on DIII-D , 2008 .

[15]  K. Shaing Magnetohydrodynamic-activity-induced toroidal momentum dissipation in collisionless regimes in tokamaks , 2003 .

[16]  R. J. Groebner,et al.  Scaling studies of the high mode pedestal , 1998 .

[17]  K. Tritz,et al.  Observation of a high performance operating regime with small edge-localized modes in the National Spherical Torus Experiment , 2004 .

[18]  R. Fitzpatrick Bifurcated states of a rotating tokamak plasma in the presence of a static error-field , 1998 .

[19]  J. S. deGrassie,et al.  Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D , 2008 .

[20]  John L. Johnson,et al.  Computation of the Magnetohydrodynamic Spectrum in Axisymmetric Toroidal Confinement Systems , 1976 .

[21]  M. Ono,et al.  The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment , 2008 .

[22]  K. Tritz,et al.  Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas. , 2006, Physical review letters.

[23]  R. Bell,et al.  Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity. , 2006, Physical review letters.

[24]  T. L. Rhodes,et al.  Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas , 2005 .

[25]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[26]  D K Mansfield,et al.  Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.

[27]  L. Lao,et al.  Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak , 2001 .