Next Steps for Human-Computer Integration

Human-Computer Integration (HInt) is an emerging paradigm in which computational and human systems are closely interwoven. Integrating computers with the human body is not new. however, we believe that with rapid technological advancements, increasing real-world deployments, and growing ethical and societal implications, it is critical to identify an agenda for future research. We present a set of challenges for HInt research, formulated over the course of a five-day workshop consisting of 29 experts who have designed, deployed and studied HInt systems. This agenda aims to guide researchers in a structured way towards a more coordinated and conscientious future of human-computer integration.

[1]  Taylor Carman,et al.  The Body in Husserl and Merleau-Ponty , 1999 .

[2]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[3]  Martin Kocher,et al.  Extraction of a dislocated leadless pacemaker in a patient with infective endocarditis and repeated endocardial and epicardial pacing system infections. , 2019, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia.

[4]  Dag Svanæs,et al.  Wag Your Tail and Flap Your Ears: The Kinesthetic User Experience of Extending Your Body , 2016, CHI Extended Abstracts.

[5]  Katina Michael,et al.  Social-technical issues facing the humancentric RFID implantee sub-culture through the eyes of Amal Graafstra , 2010, 2010 IEEE International Symposium on Technology and Society.

[6]  Sebastian Boring,et al.  Dark patterns in proxemic interactions: a critical perspective , 2014, Conference on Designing Interactive Systems.

[7]  Joseph M. Romano,et al.  Creating Realistic Virtual Textures from Contact Acceleration Data , 2012, IEEE Transactions on Haptics.

[8]  Giuseppe Riva,et al.  Virtual Reality-Based Multidimensional Therapy for the Treatment of Body Image Disturbances in Obesity: A Controlled Study , 2001, Cyberpsychology Behav. Soc. Netw..

[9]  E. Ahissar,et al.  Perception as a closed-loop convergence process , 2016, eLife.

[10]  Joseph Wang,et al.  A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring , 2016, Nature Communications.

[11]  Andy Clark,et al.  Natural-Born Cyborgs? , 2001, Cognitive Technology.

[12]  Tovi Grossman,et al.  Implanted user interfaces , 2012, CHI.

[13]  Pedro Lopes,et al.  Interactive Systems Based on Electrical Muscle Stimulation , 2017, Computer.

[14]  Serena Chen,et al.  The relational self: an interpersonal social-cognitive theory. , 2002, Psychological review.

[15]  Marion Koelle,et al.  Don't look at me that way!: Understanding User Attitudes Towards Data Glasses Usage , 2015, MobileHCI.

[16]  Umer Farooq,et al.  Paradigm Shift from Human Computer Interaction to Integration , 2017, CHI Extended Abstracts.

[17]  Ben Shneiderman,et al.  Human Computer Integration versus Powerful Tools , 2017, CHI Extended Abstracts.

[18]  Kasper Hornbæk,et al.  Veritaps: Truth Estimation from Mobile Interaction , 2018, CHI.

[19]  Katrin Wolf,et al.  Illusion of Surface Changes Induced by Tactile and Visual Touch Feedback , 2015, CHI Extended Abstracts.

[20]  Vincent Hayward,et al.  Feeling What an Insect Feels , 2014, PloS one.

[21]  Suranga Nanayakkara,et al.  FingerReader: A Wearable Device to Explore Printed Text on the Go , 2015, CHI.

[22]  Frank Vetere,et al.  You Put What, Where?: Hobbyist Use of Insertable Devices , 2016, CHI.

[23]  Thad Starner,et al.  Passive haptic learning of Braille typing , 2014, SEMWEB.

[24]  Wendy Ju,et al.  The Design of Implicit Interactions , 2015, Synthesis Lectures on Human-Centered Informatics.

[25]  Jonathan Grudin,et al.  Human-computer integration , 2016, Interactions.

[26]  Mason Bretan,et al.  Integrating the Cognitive with the Physical: Musical Path Planning for an Improvising Robot , 2017, AAAI.

[27]  D. Ihde Technology and the lifeworld : from garden to earth , 1991 .

[28]  Carlos Velasco,et al.  Digitizing the chemical senses: Possibilities & pitfalls , 2017, Int. J. Hum. Comput. Stud..

[29]  Brian Scassellati,et al.  Socially assistive robotics [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[30]  Susanne Boll,et al.  Beyond LED Status Lights - Design Requirements of Privacy Notices for Body-worn Cameras , 2018, TEI.

[31]  Sean Follmer,et al.  Grand Challenges in Shape-Changing Interface Research , 2018, CHI.

[32]  Niels Henze,et al.  EngageMeter: A System for Implicit Audience Engagement Sensing Using Electroencephalography , 2017, CHI.

[33]  Raja S. Kushalnagar,et al.  “Wear It Loud” , 2018, ACM Trans. Access. Comput..

[34]  Sarah Homewood,et al.  Turned On / Turned Off: Speculating on the Microchip-based Contraceptive Implant , 2017, Conference on Designing Interactive Systems.

[35]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[36]  Ben Shneiderman,et al.  Grand challenges for HCI researchers , 2016, Interactions.

[37]  Hugo Fuks,et al.  Beauty technology as an interactive computing platform , 2013, ITS.

[38]  Kevin Kelly,et al.  Out of Control: The New Biology of Machines, Social Systems, and the Economic World , 1992 .

[39]  Kai Kunze,et al.  MetaArms: Body Remapping Using Feet-Controlled Artificial Arms , 2018, UIST.

[40]  Albert Borgmann Review of Peter-Paul Verbeek's What Things Do: Philosophical Reflections on Technology, Agency, and Design , 2005 .

[41]  Jürgen Steimle,et al.  Multi-Touch Skin: A Thin and Flexible Multi-Touch Sensor for On-Skin Input , 2018, CHI.

[42]  Steve Mann Wearable Computing: Toward Humanistic Intelligence , 2001 .

[43]  Jürgen Steimle,et al.  Skin--The Next User Interface , 2016, Computer.

[44]  Alex Olwal,et al.  SkinMarks: Enabling Interactions on Body Landmarks Using Conformal Skin Electronics , 2017, CHI.

[45]  Stefan Greuter,et al.  The Guts Game: Designing Playful Experiences for Ingestible Devices , 2018, CHI Extended Abstracts.

[46]  Douglas C. Engelbart,et al.  Augmenting human intellect: a conceptual framework , 1962 .

[47]  Athanasios V. Vasilakos,et al.  Body Area Networks: A Survey , 2010, Mob. Networks Appl..

[48]  Jürgen Steimle,et al.  Tacttoo: A Thin and Feel-Through Tattoo for On-Skin Tactile Output , 2018, UIST.

[49]  Maysam Ghovanloo,et al.  The tongue and ear interface: a wearable system for silent speech recognition , 2014, SEMWEB.

[50]  Pedro Lopes,et al.  Preemptive Action: Accelerating Human Reaction using Electrical Muscle Stimulation Without Compromising Agency , 2019, CHI.

[51]  Alexandru Dancu,et al.  The Ultimate Display , 2014 .

[52]  Margo DeMello,et al.  Encyclopedia of body adornment , 2007 .

[53]  H. Tajfel Social identity and intergroup behaviour , 1974 .

[54]  Barry I. Freedman,et al.  Normative Values for Electrochemical Skin Conductances and Impact of Ethnicity on Quantitative Assessment of Sudomotor Function. , 2016, Diabetes technology & therapeutics.

[55]  Ryan Wicker,et al.  Multiprocess 3D printing for increasing component functionality , 2016, Science.

[56]  Kasper Hornbæk,et al.  An affect detection technique using mobile commodity sensors in the wild , 2016, UbiComp.

[57]  Suranga Nanayakkara,et al.  ChewIt. An Intraoral Interface for Discreet Interactions , 2019, CHI.

[58]  Michael R. Neuman,et al.  Wearable sensors : fundamentals, implementation and applications , 2014 .

[59]  Michael S. Bernstein,et al.  The future of crowd work , 2013, CSCW.

[60]  Julian de Hoog,et al.  "I had super-powers when eBike riding" Towards Understanding the Design of Integrated Exertion , 2018, CHI PLAY.

[61]  P. Hartvigsen The Computer for the 21st Century (1991) , 2014 .

[62]  Sebastian Boring,et al.  From Pulse Trains to "Coloring with Vibrations": Motion Mappings for Mid-Air Haptic Textures , 2018, CHI.

[63]  Ivan E. Sutherland,et al.  The Ultimate Display , 1965 .

[64]  Ali Israr,et al.  Sensing the future of HCI , 2016, Interactions.

[65]  Kosuke Sato,et al.  Egocentric Smaller-person Experience through a Change in Visual Perspective , 2019, CHI Extended Abstracts.

[66]  Halley Profita,et al.  The AT Effect: How Disability Affects the Perceived Social Acceptability of Head-Mounted Display Use , 2016, CHI.

[67]  Niels Henze,et al.  Virtual reality on the go?: a study on social acceptance of VR glasses , 2018, MobileHCI Adjunct.

[68]  Per Ola Kristensson,et al.  I did that! Measuring users' experience of agency in their own actions , 2012, CHI 2012.

[69]  Xiuxiu Yuan,et al.  User specific assistive technology: Hand mounted switch control platform design , 2018 .

[70]  Nicholas J. Belkin,et al.  Some(what) grand challenges for information retrieval , 2008, SIGF.

[71]  Thad Starner The Challenges of Wearable Computing: Part 2 , 2001, IEEE Micro.

[72]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[73]  Christian Holz,et al.  DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials , 2016, SEMWEB.

[74]  Masahiko Inami,et al.  MetaLimbs: multiple arms interaction metamorphism , 2017, SIGGRAPH Emerging Technologies.

[75]  Joanna Bergstrom-Lehtovirta,et al.  I Really did That: Sense of Agency with Touchpad, Keyboard, and On-skin Interaction , 2018, CHI.

[76]  Jürgen Steimle Printed electronics for human-computer interaction , 2015, Interactions.

[77]  Amy J. C. Cuddy,et al.  Warmth and Competence As Universal Dimensions of Social Perception: The Stereotype Content Model and the BIAS Map , 2008 .

[78]  Mark Weiser The computer for the 21st century , 1991 .

[79]  Eric Paulos,et al.  Skintillates: Designing and Creating Epidermal Interactions , 2016, Conference on Designing Interactive Systems.

[80]  David W. McDonald,et al.  Man-Computer Symbiosis , 2007 .

[81]  Joanna Bergstrom-Lehtovirta,et al.  Placing and Recalling Virtual Items on the Skin , 2017, CHI.

[82]  Sebastian Boring,et al.  Automatic Calibration of High Density Electric Muscle Stimulation , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[83]  Sarah Jane Pell,et al.  Technology meets adventure: learnings from an earthquake-interrupted Mt. everest expedition , 2016, UbiComp.

[84]  Suranga Nanayakkara,et al.  GymSoles: Improving Squats and Dead-Lifts by Visualizing the User's Center of Pressure , 2019, CHI.

[85]  F. Vetere,et al.  Cognitive Heat , 2017 .

[86]  Pedro Lopes,et al.  Muscle-plotter: An Interactive System based on Electrical Muscle Stimulation that Produces Spatial Output , 2016, UIST.

[87]  C. Spence,et al.  Multisensory Technology for Flavor Augmentation: A Mini Review , 2018, Front. Psychol..

[88]  Albrecht Schmidt,et al.  Reflexive Interaction: Extending the concept of Peripheral Interaction , 2019, OZCHI.

[89]  Paul G. Keil Human-Sheepdog Distributed Cognitive Systems: An Analysis of Interspecies Cognitive Scaffolding in a Sheepdog Trial , 2015 .

[90]  Hitten P. Zaveri,et al.  A Review of Cerebral Shunts, Current Technologies, and Future Endeavors , 2018, The Yale journal of biology and medicine.

[91]  Pedro Lopes,et al.  Proprioceptive Interaction , 2015, CHI.

[92]  Wei Wang,et al.  The Guts Game: Towards Designing Ingestible Games , 2018, CHI PLAY.

[93]  Henry Dreyfuss,et al.  Measure of Man and Woman: Human Factors in Design , 1993 .

[94]  Ashok K. Goel,et al.  Interactive Meta-Reasoning: Towards a CAD-Like Environment for Designing Game-Playing Agents , 2015 .

[95]  Paul Strohmeier,et al.  Developing an Ecosystem for Interactive Electronic Implants , 2016, Living Machines.

[96]  Joseph A. Paradiso,et al.  A cuttable multi-touch sensor , 2013, UIST.

[97]  Alexis McCrossen,et al.  Marking Modern Times: A History of Clocks, Watches, and Other Timekeepers in American Life , 2013 .

[98]  Tong Lu,et al.  iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing , 2015, CHI.

[99]  Vincent Hayward,et al.  A Stable and Transparent Microscale Force Feedback Teleoperation System , 2015, IEEE/ASME Transactions on Mechatronics.

[100]  B. Pfeffer What Things Do Philosophical Reflections On Technology Agency And Design , 2016 .