TVL _1 Planarity Regularization for 3D Shape Approximation

The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within.

[1]  Heiko Hirschmüller,et al.  Semi-Global Matching-Motivation, Developments and Applications , 2011 .

[2]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[3]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[6]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[7]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[8]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[9]  Cohen-OrDaniel,et al.  Computing and Rendering Point Set Surfaces , 2003 .

[10]  S. Levitus,et al.  US Government Printing Office , 1998 .

[11]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[12]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[13]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[14]  Horst Bischof,et al.  A Globally Optimal Algorithm for Robust TV-L1 Range Image Integration , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[16]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[17]  C. Basaran Preface , 1934, The Yale Journal of Biology and Medicine.

[18]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[19]  Daniel Ricao Canelhas Scene Representation, Registration and ObjectDetection in a Truncated Signed Distance FunctionRepresentation of 3D Space , 2012 .

[20]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[21]  Tim Bodenmüller,et al.  Streaming surface reconstruction from real time 3D-measurements , 2009 .

[22]  Achim J. Lilienthal,et al.  SDF Tracker: A parallel algorithm for on-line pose estimation and scene reconstruction from depth images , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[24]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[25]  David F. Rogers,et al.  An Introduction to NURBS , 2000 .

[26]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[27]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[28]  Max K. Agoston,et al.  Computer graphics and geometric modelling - implementation and algorithms , 2005 .

[29]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[30]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[31]  Gabriel Taubin,et al.  SSD: Smooth Signed Distance Surface Reconstruction , 2011, Comput. Graph. Forum.

[32]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[33]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[34]  Irina Voiculescu,et al.  Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms , 2009 .

[35]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.

[36]  Xi Chen,et al.  An Efficient Proximal-Gradient Method for Single and Multi-task Regression with Structured Sparsity , 2010, ArXiv.

[37]  M. Gross,et al.  Algebraic point set surfaces , 2007, SIGGRAPH 2007.

[38]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[39]  Zhenwei Cao,et al.  Robust Data Modelling Using Thin Plate Splines , 2013, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[40]  Pascal Getreuer,et al.  Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman , 2012, Image Process. Line.

[41]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[42]  G. Wahba Spline models for observational data , 1990 .

[43]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[44]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[45]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.