Autonomous Van der Pol–Duffing snap oscillator: analysis, synchronization and applications to real-time image encryption

In this paper, we investigate a four dimensional autonomous Van der Pol–Duffing (VdPD) oscillator which is built by converting an autonomous two-dimensional VdPD oscillator to a snap oscillator. The basic dynamical properties of the proposed autonomous VdPD snap oscillator are discussed in terms of its parameters by using standard tools of nonlinear analysis. The bifurcation analysis reveals rich and interesting features of the proposed autonomous VdPD snap oscillator such as period-doubling bifurcations, bistabe chaotic behavior, double scroll chaotic behavior, periodic windows, symmetry breaking and recovering bifurcations. One of the main findings of this paper is the presence of a window in the parameter space in which the proposed autonomous VdPD snap oscillator displays the striking feature of coexisting of multiple attractors. An electronic circuit model of the proposed autonomous VdPD snap oscillator is designed and its simulations are performed using an ORCAD-PSpice software. A good qualitative agreement is obtained between the numerical and ORCAD-PSpice results. Adaptive sliding mode control method is successfully used to achieve the synchronization of unidirectional coupled proposed autonomous VdPD snap oscillators in double scroll chaotic regime. Finally using LabVIEW, chaotic synchronization of unidirectional coupled proposed autonomous VdPD snap oscillators is used to develop and implement a real-time image encryption algorithm with a secondary image based on chaos masking technique.

[1]  Zengqiang Chen,et al.  A novel hyperchaos system only with one equilibrium , 2007 .

[2]  H. Agiza,et al.  Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor , 2008 .

[3]  Jacques Kengne,et al.  Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit , 2016 .

[4]  Paul Woafo,et al.  Synchronizing modified van der Pol–Duffing oscillators with offset terms using observer design: application to secure communications , 2007 .

[5]  Sundarapandian Vaidyanathan,et al.  Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation , 2015 .

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  Julien Clinton Sprott,et al.  Simple Chaotic Hyperjerk System , 2016, Int. J. Bifurc. Chaos.

[8]  Paul Woafo,et al.  Chaotic synchronization with experimental application to secure communications , 2009 .

[9]  Julien Clinton Sprott,et al.  Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system , 2012 .

[10]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[11]  Hsien-Keng Chen,et al.  Generation of hyperchaos from the Chen–Lee system via sinusoidal perturbation , 2008 .

[12]  Wenjuan Wu,et al.  Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system , 2010 .

[13]  Teh-Lu Liao,et al.  Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization , 2005 .

[14]  刘凌,et al.  A novel four-dimensional autonomous hyperchaotic system , 2009 .

[15]  Ihsan Pehlivan,et al.  A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization , 2012, Comput. Electr. Eng..

[16]  Luigi Fortuna,et al.  Dynamics and Synchronization of a Novel Hyperchaotic System Without Equilibrium , 2014, Int. J. Bifurc. Chaos.

[17]  A. Jonscher Dielectric relaxation in solids , 1983 .

[18]  Wanda Szemplińska-Stupnicka,et al.  THE COEXISTENCE OF PERIODIC, ALMOST-PERIODIC AND CHAOTIC ATTRACTORS IN THE VAN DER POL-DUFFING OSCILLATOR , 1997 .

[19]  Norio Akamatsu,et al.  Chaotically transitional phenomena in the forced negative-resistance oscillator , 1980 .

[20]  Pierre Gaspard,et al.  Microscopic chaos and chemical reactions , 1999 .

[21]  Julien Clinton Sprott,et al.  Coexistence and chaos in complex ecologies , 2005 .

[22]  Sundarapandian Vaidyanathan,et al.  LabVIEW implementation of chaotic masking with adaptively synchronised forced Van der Pol oscillators and its application in real-time image encryption , 2017, Int. J. Simul. Process. Model..

[23]  Jan Danckaert,et al.  Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect , 2015 .

[24]  Qiang Jia,et al.  Hyperchaos generated from the Lorenz chaotic system and its control , 2007 .

[25]  Marios Kyriazis Applications of chaos theory to the molecular biology of aging , 1991, Experimental Gerontology.

[26]  Xinping Guan,et al.  Formation and obstacle avoidance control for multiagent systems , 2011 .

[27]  K. Aihara,et al.  Chaotic neural networks , 1990 .

[28]  Shrinivas Lankalapalli,et al.  Chaos in Robot Control Equations , 1997 .

[29]  Guanrong Chen,et al.  A twin‐star hyperchaotic attractor and its circuit implementation , 2003, Int. J. Circuit Theory Appl..

[30]  Sundarapandian Vaidyanathan,et al.  Hyperchaotic Attractor in a Novel Hyperjerk System with Two Nonlinearities , 2018, Circuits Syst. Signal Process..

[31]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[32]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[33]  O. Rössler An equation for hyperchaos , 1979 .

[34]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[35]  Julien Clinton Sprott,et al.  Chaotic hyperjerk systems , 2006 .

[36]  Stefan J. Linz,et al.  On hyperjerky systems , 2008 .

[37]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[38]  Julien Clinton Sprott,et al.  Generalization of the simplest autonomous chaotic system , 2011 .

[39]  Buncha Munmuangsaen,et al.  Elementary chaotic snap flows , 2011 .

[40]  Sundarapandian Vaidyanathan,et al.  Sliding Mode Controller Design for the Global Chaos Synchronization of Coullet Systems , 2012 .

[41]  Colin E. Gough,et al.  High-temperature superconductivity , 1996 .

[42]  Uchechukwu E. Vincent,et al.  Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator , 2011 .

[43]  H. Yau,et al.  Chaos synchronization using fuzzy logic controller , 2008 .

[44]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[45]  Sundarapandian Vaidyanathan,et al.  Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system , 2015, Int. J. Model. Identif. Control..

[46]  Sundarapandian Vaidyanathan,et al.  Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System via Backstepping Control Method , 2016 .

[47]  Hilaire Bertrand Fotsin,et al.  Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator , 2001 .

[48]  Guanrong Chen,et al.  A new hyperchaotic system and its circuit implementation , 2009 .