Finite Element Approximation of the Diffusion Operator on Tetrahedra
暂无分享,去创建一个
[1] Giuseppe Gambolati,et al. Diagonally dominant matrices for the finite element method in hydrology , 1973 .
[2] David W. Lewis,et al. Matrix theory , 1991 .
[3] Frank W. Letniowski,et al. Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..
[4] Tullio Tucciarelli,et al. A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation , 1986 .
[5] J. Z. Zhu,et al. The finite element method , 1977 .
[6] T. Narasimhan,et al. AN INTEGRATED FINITE DIFFERENCE METHOD FOR ANALYZING FLUID FLOW IN POROUS MEDIA , 1976 .
[7] Jean-Jacques Risler. Mathematical methods for CAD , 1992 .
[8] Peter A. Forsyth,et al. A Control Volume Finite Element Approach to NAPL Groundwater Contamination , 1991, SIAM J. Sci. Comput..
[9] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[10] W. Kinzelbach,et al. A Subdomain Collocation Approach in Tetrahedral Finite Elements , 1994 .
[11] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[12] B. Joe. Delaunay Triangular Meshes in Convex Polygons , 1986 .