Texture-Preserving Despeckling of SAR Images Using Evidence Framework

In this letter, a texture-preserving despeckling algorithm for synthetic aperture radar images using an evidence framework is proposed. The salient aspects of this approach are given as follows. (1) The maximum a posteriori estimate can be guaranteed to converge to the optima by selecting the Gaussian distribution and Gaussian Markov random field model as the likelihood function and prior model, respectively. (2) MacKay's evidence framework can automatically sustain the balance between speckle reduction and texture preservation. (3) We use the Jeffreys prior to perform the second-level inference of the evidence framework. Experimental results are given to demonstrate the validity of the proposed despeckling method.

[1]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[2]  James T. Kwok,et al.  The evidence framework applied to support vector machines , 2000, IEEE Trans. Neural Networks Learn. Syst..

[3]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[4]  Josiane Zerubia,et al.  SAR image filtering based on the heavy-tailed Rayleigh model , 2006, IEEE Transactions on Image Processing.

[5]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[6]  Rama Chellappa,et al.  Texture synthesis and compression using Gaussian-Markov random field models , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[9]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[10]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[11]  Mihai Datcu,et al.  Model-based despeckling and information extraction from SAR images , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[13]  Mihai Datcu,et al.  Spatial information retrieval from remote-sensing images. I. Information theoretical perspective , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  D. Mackay,et al.  A Practical Bayesian Framework for Backprop Networks , 1991 .

[15]  E. Nezry,et al.  Maximum A Posteriori Speckle Filtering And First Order Texture Models In Sar Images , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[16]  Fawwaz T. Ulaby,et al.  Statistical properties of logarithmically transformed speckle , 2002, IEEE Trans. Geosci. Remote. Sens..

[17]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[18]  Fawwaz T. Ulaby,et al.  SAR speckle reduction using wavelet denoising and Markov random field modeling , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Jesper Schou,et al.  Restoration of polarimetric SAR images using simulated annealing , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  Alin Achim,et al.  SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[22]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.