Indirect Exchange Interaction Leads to Large Lattice Contribution to Magnetocaloric Entropy Change.

Materials with a large magnetocaloric response are highly desirable for magnetic cooling applications. It is suggested that a strong spin-lattice coupling tends to generate a large magnetocaloric effect, but no microscopic mechanism has been proposed. In this work, we use spin lattice dynamics simulation to examine the lattice contribution to the magnetocaloric entropy change in bcc iron (Fe) and hcp gadolinium (Gd) with exchange interaction parameters determined from ab initio calculations. We find that indirect Ruderman Kittel Kasuya Yosida (RKKY) exchange interaction in hcp Gd leads to longer range spin lattice coupling and more strongly influences the low frequency long wavelength phonons. This results in a higher lattice contribution towards the total magnetocaloric entropy change as compared to bcc Fe with short range direct exchange interactions. Our analysis provides a framework for understanding the magnetocaloric effect in magnetic materials with strong spin lattice couplings. Our finding suggests that long range indirect RKKY type exchange gives rise to a larger lattice contribution to the magnetocaloric entropy change and is, thus, beneficial for magnetocaloric materials.

[1]  X. Miao,et al.  An in-depth review of La-Fe-Si magnetocaloric composites: structure design and performance enhancement , 2022, Journal of Magnetism and Magnetic Materials.

[2]  T. Björkman,et al.  Realistic first-principles calculations of the magnetocaloric effect: applications to hcp Gd , 2022, Materials Research Letters.

[3]  G. Granroth,et al.  Spin-exchange Hamiltonian and topological degeneracies in elemental gadolinium , 2021, Physical Review B.

[4]  A. Banerjee,et al.  Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3 , 2021, Nature Physics.

[5]  K. Yanushkevich,et al.  Giant magnetocaloric effect in MnAs1−xPx in a cyclic magnetic field: Lattice and magnetic contributions and degradation of the effect , 2021 .

[6]  A. Banerjee,et al.  Finite field regime for a quantum spin liquid in α−RuCl3 , 2019, Physical Review B.

[7]  O. Gutfleisch,et al.  Making a Cool Choice: The Materials Library of Magnetic Refrigeration , 2019, Advanced Energy Materials.

[8]  Anna Delin,et al.  General method for atomistic spin-lattice dynamics with first-principles accuracy , 2018, Physical Review B.

[9]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[10]  Aidan P. Thompson,et al.  Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics , 2018, J. Comput. Phys..

[11]  Zeyu Liu,et al.  Magnon and Phonon Dispersion, Lifetime and Thermal Conductivity of Iron from Spin-Lattice Dynamics Simulations , 2017, 1712.09002.

[12]  Y. Bai,et al.  Manifestation of intra-atomic 5d6s-4f exchange coupling in photoexcited gadolinium , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  P. Fournier,et al.  Advanced materials for magnetic cooling: Fundamentals and practical aspects , 2017, 2012.08176.

[14]  Stephen D. Wilson,et al.  A Simple Computational Proxy for Screening Magnetocaloric Compounds , 2017 .

[15]  G. M. Stocks,et al.  Collective dynamics in atomistic models with coupled translational and spin degrees of freedom , 2017, 1701.07906.

[16]  H. Kimura,et al.  Tiny adiabatic-demagnetization refrigerator for a commercial superconducting quantum interference device magnetometer. , 2016, The Review of scientific instruments.

[17]  M. Katsnelson,et al.  Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe. , 2015, Physical review letters.

[18]  C. Aprea,et al.  Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature , 2015 .

[19]  M. Katsnelson,et al.  Exchange parameters of strongly correlated materials: extraction from spin-polarised density functional theory plus dynamical mean field theory , 2015, 1503.02864.

[20]  S. Dudarev,et al.  Dynamic magnetocaloric effect in bcc iron and hcp gadolinium , 2014 .

[21]  F. Hu,et al.  Magnetocaloric properties of La(Fe,Si)13-based material and its hydride prepared by industrial mischmetal , 2012 .

[22]  Dale J. Fixsen,et al.  Design of the PIXIE adiabatic demagnetization refrigerators , 2012 .

[23]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[24]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[25]  C. Woo,et al.  Exchange interaction function for spin-lattice coupling in bcc iron , 2010 .

[26]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[27]  V. Pecharsky,et al.  Making the most of the magnetic and lattice entropy changes , 2009 .

[28]  A. Mitsuda,et al.  Pressure dependence of magnetic entropy change and magnetic transition in MnAs1-x Sbx , 2009 .

[29]  S. Dudarev,et al.  Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron , 2008 .

[30]  O. Eriksson,et al.  A method for atomistic spin dynamics simulations: implementation and examples , 2008, 0806.1582.

[31]  M. Kuz’min Factors limiting the operation frequency of magnetic refrigerators , 2007 .

[32]  X. Moya,et al.  Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.

[33]  I. Turek,et al.  Exchange interactions, spin waves, and transition temperatures in itinerant magnets , 2006 .

[34]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[35]  L. P. Cardoso,et al.  Giant magnetocaloric effect in Gd5(Si2Ge2) alloy with low purity Gd , 2004 .

[36]  M. Ibarra,et al.  Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. , 2004, Physical review letters.

[37]  M. Ibarra,et al.  Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd5Ge4. , 2003, Physical review letters.

[38]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[39]  B. Hickey,et al.  Direct experimental evidence for the Ruderman-Kittel-Kasuya-Yosida interaction in rare-earth metals. , 2003, Physical review letters.

[40]  D. Wallace,et al.  Statistical Physics of Crystals and Liquids: A Guide to Highly Accurate Equations of State , 2003 .

[41]  G. Miller,et al.  Nanoscale Zippers in the Crystalline Solid. Structural Variations in the Giant Magnetocaloric Material Gd5Si1.5Ge2.5 , 2003 .

[42]  Gustav Bihlmayer,et al.  Magnetism and electronic structure of hcp Gd and the Gd(0001) surface , 2002 .

[43]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[44]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[45]  I. Turek,et al.  Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni , 2000, cond-mat/0007441.

[46]  R. Muniz,et al.  Exchange coupling in transition-metal ferromagnets , 2000 .

[47]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  A. Freeman,et al.  Theory of non‐Heisenberg exchange: Results for localized and itinerant magnets , 1996 .

[50]  Harmon,et al.  Ab initio spin dynamics in magnets. , 1995, Physical review letters.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Michael I. Baskes,et al.  Modified embedded atom potentials for HCP metals , 1994 .

[53]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[54]  Parkin,et al.  Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. , 1991, Physical review letters.

[55]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[56]  Paul L. Richards,et al.  An adiabatic demagnetization refrigerator for infrared bolometers , 1981, 1981 International Conference on Submillimeter Waves and Their Applications.

[57]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[58]  P. B. Allen,et al.  Thermodynamics of anharmonic crystals with application to Nb , 1975 .

[59]  A. Freeman,et al.  Theoretical Magnon Dispersion Curves for Gd , 1975 .

[60]  K. Yosida,et al.  Magnetic Properties of Cu-Mn Alloys , 1957 .

[61]  T. Kasuya,et al.  A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model , 1956 .

[62]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .